Trees

Carlos Carvalho, Mladen Kolar and Rob
McCulloch

LCoN WD

Trees

Regression Trees

Classification Trees

Trees: A Summary

Fitting Trees: the Bias Variance Trade Off Again
Bagging and Random Forests

Boosting Trees

Variable Importance Measures

Trees, Random Forests, Boosting: The California Data

1. Trees

Tree based methods are a major player in data-mining.

Good:

» flexible fitters, capture non-linearity and interactions.

v

do not have to think about scale of x variables.

v

handles categorical and numeric y and x very nicely.

> fast.

v

interpretable (when small).

Bad:

Not the best in out-of-sample predictive performance
(but not bad!!).

But,

If we bag or boost trees, we can get the best off-the-shelf
prediction available.

Bagging and Boosting are ensemble methods that combine the fit
from many (hundreds, thousands) of tree models to get an overall
predictor.

2. Regression Trees

Let's look at a simple 1-dimensional example so that we can see
what is going on.

We'll use the Boston housing data and relate x=lIstat to y=medval.

At left is the tree fit to the data.

At each interior node there is a decision rule of the form {x < c}.
If x < ¢ you go left, otherwise you go right.

Each observation is sent down the tree until it hits a bottom node
or leaf of the tree.

Istat <,9.725
T

50
1

40
1

Istat § 4.65 Istat < {16.085

medv
30
|

Istat 43.325 Istat <|5.495 Istat 4 19.9 o |
20.30 «

10
1

43.99 37.32 30.47 25.85 16.37 12.33

T T T
10 20 30

Istat

The set of bottom nodes gives us a partition of the predictor (x)
space into disjoint regions. At right, the vertical lines display the
partition. With just one x, this is just a set of intervals.

Within each region (interval) we compute the average of the y
values for the subset of training data in the region. This gives us
the step function which is our . The ¥ values are also printed at
the bottom nodes (left plot).

Istat <,9.725
T

50
1

40
1

Istat § 4.65 Istat < [16.085

medv
30
|

Istat 43.325 Istat <5.495 Istat 4 19.9
20.30

20

10
1

4399 3732 3047 2585 1637 1233 — . : — .

10 20 30

Istat
To predict, we just use our step function estimate of f(x).
Equivalently, we drop x down the tree until it lands in a leaf and

then predict the average of the y values for the training
observations in the same leaf.

A Tree with Two Explanatory Variables

Here is a tree with x = (x1, x2) = (Istat,dis) and y=medv.

Now the decision rules can use either of the two x’s.

Istat <,9.725
t

12
1

Istat § 4.65 Istat <[16.085

20.3

dis

dis < 3120745 dis < 3.4501 dis < 2.0037
20.30

34.4 12.0

48.30 37.01 34.38 25.68 11.97 16.75

T T T T T T T
5 10 15 20 25 30 35

Istat

At right is the partition of the x space corresponding to the set of
bottom nodes (leaves).

The average y for training observations assigned to a region is
printed in each region and at the bottom nodes. 6

This is the regression function
given by the tree.

It is a step function which can
seem dumb, but it delivers non-
linearity and interactions in a
simple way and works with a
lot of variables.

Notice the interaction.
The effect of dis depends on
lstat!!

S

The California Housing Data

Here is a tree with 50 bottom nodes fit to the California Housing

data using only longitude and latitude.

latitude £ 38.475
longitude § ~121.655 latiude | 39,355 1o | 111
latitude § 37.925 latitude § 34.525 longitude § ~121.365 El
] .33 T
longitude { ~1a8ragide | -122.38longitude { ~118.335 {12760 sl
191 Ly 112 116
faitude 165 longitude 745 T2 51
S 125 2 119
Ton & T
ms]
£ 13
2 g
2 84 129 2
T
121 ‘ 116
I 70
§ 17 7
T
121115
- 129 2;
g
B
T
T T T T T
34 36 38 40 42
latitude

Don't extrapolate into the ocean!

Here is a view of the fit using the map of the state.

(units are dollars, the logMedVal was exponentiated for the Iabels).

406861
349539
341261
319816
287062
273399
261904
257975
240373
206308
194321
189045
186143
181163
170228
164460
158000
148132
133649
125498
112550

In R:

#
#load tree package (and MASS), attach Boston data
library(tree)

library (MASS)

#data(Boston) #don’t need this

attach(Boston)

#
#fit a tree to boston data just using lstat.

#first get a big tree using a small value of mindev
temp = tree(medv~lstat,data=Boston,mindev=.0001)
cat("first big tree size: \n")

print (length(unique (temp$where)))

#if the tree is too small, make mindev smaller!!

#
#then prune it down to one with 7 leaves
boston.tree=prune.tree(temp,best=7)
cat("pruned tree size: \n")

print (length(unique (boston.tree$where)))

10

#
#plot the tree

plot(boston.tree,type="uniform")

text (boston.tree,col="blue",label=c("yval"),cex=.8)

#

#plot data with fit

#get fit

boston.fit = predict(boston.tree) #get training fitted values
#plot fit

plot(lstat,medv,cex=.5,pch=16) #plot data
oo=order(lstat)
lines(1lstat[oo] ,boston.fit[oo],col="red",1wd=3) #step function fit

#
#predict at lstat = 15 and 25.

preddf = data.frame(lstat=c(15,25))

yhat = predict(boston.tree,preddf)
points(preddf$lstat,yhat,col="blue",pch="*",6cex=3)

11

Let's fit the tree using 1stat and dis.

#
df2=Boston[,c(8,13,14)] #pick off dis,lstat,medv
print (names (df2))

#
#big tree

temp = tree(medv”.,df2,mindev=.0001)
cat("first big tree size: \n")

print (length(unique (temp$where)))

#then prune it down to one with 7 leaves
boston.tree=prune.tree(temp,best=7)

cat ("pruned tree size: \n")

print (length(unique (boston.tree$where)))

#
plot tree and partition in x.

par (mfrow=c(1,2))

#plot tree

plot(boston.tree, type="u")

text (boston.tree,col="blue",label=c("yval"),cex=.8)
#plot 2-dimesional partition in (x1,x2) = (1lstat,dis)
partition.tree(boston.tree)

12

#

#let’s compare in-sample fits from our two trees with each other and y

boston.fit2 = predict(boston.tree)

fmat = cbind(medv,boston.fit,boston.fit2)
colnames (fmat)=c("y=medv","treel","treeld")
pairs(fmat)

print (cor(fmat))

#.
#

#predict at lstat = 15 and 25 and dis = 2 both times
preddf=data.frame(lstat=c(15,25),dis=c(2,2))

yhat2 = predict(boston.tree,preddf)

cat("predictions are:\n")

print (yhat2)

13

Lets try p = 4 with nox, rm, ptratio, and Istat.

#
df4=Boston[,c(5,6,11,13,14)] #pick off variables
print (names(df4))

temp = tree(medv”.,df4,mindev=.0001)

cat("first big tree size: \n")

print (length(unique (temp$where)))

#
#then prune it down to one with 15 leaves (picked 15 arbitrarily)
boston.treed=prune.tree(temp,best=15)

cat("pruned tree size: \n")

print (length(unique (boston.tree4$where)))

#
#plot tree

par (mfrow=c(1,1))

plot(boston.tree4,type="u")

text (boston.tree4,col="blue",label=c("yval"),cex=.8)

#.
#

#compare fits
fmat4=cbind(fmat,predict(boston.treed))
colnames (fmat4) [4]="treed"

pairs(fmat4)

print (cor(fmat4))

14

2.1. Problem: Mileage and Price with Trees

Using the susedcars.csv data set, use trees to relate y=price to
x=mileage.

Try different tree sizes (e.g. 5, 15,50).

Which tree size “looks like it gives a good fit".

15

2.2. Problem: Mileage and Price with Trees

Using the susedcars.csv data set, use trees to relate y=price to
x1=mileage and x2=year.

Try different tree sizes (e.g. 5, 15,50).

Which tree size “looks like it gives a good fit".

16

3. Classification Trees

Let's do a tree for a classification problem.

We'll use the hockey penalty data.

The response is whether or not the next penalty is on the other
team and x is a bunch of stuff about the game situation

(the score ...).

In addition, this time some of our predictors (features, x's) are
categorical.

17

Here is the tree:

goaldiff < 0.5

1
|nmi2‘ 0 timespan f 3.39167

timespan k 6.79167

numpef < 2.5

time <p2.775 goaldiff < -0.5 numpef < 2.5 time < $7.6917
.35 0.42
065 0.58
laghopne: 0
0034 044 0.40 0 0
1:066 056 0.60 0.66 054 051
0.9 0.43 2
051 0.57 0.41 0.48

» Each bottom node gives the fraction of training data in the two outcome
categories. Think of it as p for the kind of x associated with that bottom node.

» The form of the decision rule can't be x < ¢ for categorical variables.

We pick a subset of the levels to go left. inrow2:0 means all the observations
with inrow2 in the category labeled 0 go left.

18

There is a lot of fit!!!

if:

if you are not winning

you had the last two penalties

it has not been long since the last call
and there is only 1 referee

vvyyvyy

then:
there is a 72% chance the next call will be on the other team.

goaldiff < 0.5
t

InrDl/Z 0 timespan k 3.39167

numpeh < 2.5

timespan k 6.79167

time < P2.775 goaldiff < -0.5 numpeh < 2.5 time < 37.6917

5
0.65 0.58
laghojne: 0
0:0.34 0.44 0.40 0., 0.
1:0.66 0.56 0.60 0.66 0.54 0.51
0.49 0.43
0.51 0.57 0.41 0.48

Whilst there is another game situation where the chance the next
call is on the other team is only 41%. 19

4. Trees: A Summary

Trees:
» Trees use recursive binary splits to partition the predictor space.
» Each binary split consists of a decision rule which sends x left or right.
» For numeric x;, the decision rule is of the form if x; < c.
» For categorical x;, the rule lists the set of categories sent left.
»> The set of bottom nodes (or leaves) give a partition of the x space.
» To predict, we drop an out-of-sample x down the tree until it lands in a bottom

v

node.

For numeric y, we predict the average y value for the training data that ended
up in the bottom node.

For categorical y we use the category proportions for the training data that
ended up in the bottom node.

20

Good:

Handles categorical/numeric x and y nicely.
Don’t have to think about the scale of x's !!!
Computationally fast (“scales”).

Small trees are interpretable.

vyVvyYvyyVvyy

Variable selection.

Bad:

» Step function is crude, does not give the best predictive performance.
» Hard to assess uncertainly.

» Big trees are not interpretable.

21

5. Tree Models and the Bias Variance Trade Off

How do we fit trees to data??

The key idea is that a complex tree is simply a big tree.

We usually measure the complexity of the tree by the number of
bottom nodes.

22

To fit a tree, we choose a tree to minimize (on the training data):

C(T,y)=L(T,y)+a|T|

where,

» L(T,y) is our loss in fitting data y with tree T.
We want good fit on the training data = want L small.

» | T| is the number of bottom nodes in tree T.
But, we don't want a complex model that fits too well
= we want | T| small.

For numeric y our loss is usually sum of squared errors, for
categorical y we can use the deviance or the miss-classification
rate.

23

C(T,y)=L(T,y)+a|T|
a big:

The penalty for having a big tree is large.
When we do our minimization, we will get a smaller tree with a
bigger L on the training data.

o small:

We do not mind having a big tree.
We will get a smaller L (better fit) on the training data.

« is called the complexity-cost penalty parameter.

24

How do we do the minimization 77!!

Now we have a problem.

While trees are simple in some sense, once we view them as
variables in an optimization they are large and complex.

A key to tree modeling is the success of the following heuristic
algorithm for fitting trees to training data.

25

(I. Grow Big)

Use a greedy, recursive forward search to build a big tree.
(i)

Start with the tree that is a single node.

(i)

At each bottom node, search over all possible decision rules to find
the one that gives the biggest decrease in loss (increase in fit).

(iii)
Grow a big tree, stopping (for example) when each bottom node
has 5 observations in it.

26

(1. Prune Back)

(i)

Recursively, prune back the big tree from step (I).
(i)

Give a current pruned tree, examine every pair of bottom nodes

(having the same parent node) and consider eliminating the pair.

Prune the pair the gives the biggest decrease in our criterion C.

This is give us a sequence of subtrees of our initial big tree.

(iii)
For a given «, choose the subtree of the big tree that has the
smallest C.

27

So,
Give training data and o we get a tree.

How do we choose v 77

As usual, we can leave out a validation data set and choose the «
the performs best on the validation data, or use k-fold cross
validation.

28

Boston Data,
[stat and medv:

At right are three different tree
fits we get from three different
« values (using all the data).

The smaller « is, the lower the
penalty for complexity is, the
bigger tree you get.

The top tree is a sub-tree of
the middle tree, and the middle
tree is a sub-tree of the bottom
tree.

The middle « is the one sug-
gested by CV.

alpha = 0.016

1609 sanfa 65

tstat

alpha = 0.005

tstat

alpha = 0.004

san4 85

sta>4s 405

afa.32s

29

This is the CV plot giving by the R package rpart for y=medv
x=lstat.

Tree sizes at top of plot, and (a transformation of) «
(the “cost-complexity” parameter) on the bottom.

The error is relative to the error obtained with a single node
(fitis y =y, a = 00).

‘‘‘‘‘‘‘‘‘‘

Caution: the bottom axis is a transformation of «.

30

Here is the best CV tree as plotted by rpart.

Istat>50.725
Istat< §.725

Istat>#4.65
Istat<\4.65

Istat>£19.9

31

In R:

library(rpart)
library(MASS)
data(Boston)
attach(Boston)
set.seed(99)

#

#fit a single tree and plot variable importance

#fit a big tree using rpart.control

big.tree = rpart(medv”.,method="anova",data=Boston,
control=rpart.control (minsplit=5,cp=.0005))

nbig = length(unique(big.tree$where))

cat("size of big tree: ",nbig,"\n")

#

#look at CV results

plotcp(big.tree)

iibest = which.min(big.tree$cptable[,"xerror"]) #which has the lowest error

bestcp=big.tree$cptable[iibest,"CP"]

bestsize = big.tree$cptable[iibest,"nsplit"]+1

#

#prune to good tree

best.tree = prune(big.tree,cp=bestcp)

32

#.
#

#plot tree

#plot (best.tree,uniform=TRUE,branch=.5,margin=.5)

#text (best.tree,digits=4,use.n=TRUE, fancy=TRUE,bg="1lightblue")
plot(best.tree,uniform=TRUE)

text (best.tree,digits=4,use.n=TRUE)

#.
#

#get fits

yhat = predict(best.tree)
plot (Boston$medv,yhat)
abline(0,1,col="red",1lwd=3)

33

6. Bagging and Random Forests

A key idea in modern statistics is the bootstrap:

Treat the sample as if it were the population and then take iid
draws.

That is, you sample with replacement so that you can get the
same original sample value more than once in a bootstrap sample.

We can use the bootstrap to make tree much better predictors !!!!

To Bootsrap Aggregate (Bag) we:

» Take B bootstrap samples from the training data, each of the
same size as the training data.

» Fit a large tree to each bootstrap sample (we know how to do
this fast!). This will give us B trees.

» Combine the results from each of the B trees to get an overall
prediction.
34

For numeric y we can combine the results easily by making our
overall prediction the average of the predictions from each of the B
trees.

For categorical y, it is not quite so obvious how you want to
combine the results from the different trees.

Often people let the trees vote: given x get a prediction from each
tree and the category that gets the most votes (out of B ballots) is
the prediction.

Alternatively, you could average the p from each tree. Most
software seems to follow the vote plan.

35

Why on earth would this work??!!

Remember our basic intuition about averaging, for

Yi = p+ e,

we think of i as the signal and ¢; as the noise part of each
observation.

When we average the y; to get y, the signal, u, is in each draw, so
it does not wash away, but the ¢; wash out.

For us, the signal is the part of y we can guess from knowing x!!

36

Bagging works the same way.

We randomize our data and then build a lot of big
(and hence noisy!) trees.

The relationships which are real get captured in a lot of the trees
and hence do not wash out when we average.

Stuff that happens “by chance” is idiosyncratic to one (or a few)
trees and washes out in the average.

Brilliant. Leo Brieman.

37

Note:

You need B big enough to get the averaging to work, but it does
not seem to hurt if you make B bigger than that.

The cost of having very large B is in computational time.

We can build trees fast, but if you start building thousands of
really big trees on large data sets, it can end taking a while.

38

Random Forests:

Random Forests starts from Bagging and adds another kind of
randomization.

Rather than searching over all the x; in x when we do our greedy
build of the big trees, we randomly sample a subset of m variables
to search over each time we make a split.

This makes the big trees “move around more” so that we explore a

rich set of trees, but the important variables will still shine
through!!.

39

Have to choose:

» B: number of Bootstrap samples (hundreds, thousands).

» m: number of variables to sample.

A common choice is m = /p,
where p is the dimension of x.

Note:

Bagging is Random Forests with m = p.

Note:

There is no explicit regularization parameter as in the lasso and
single tree prediction.

40

OOB Error Estimation:

OOB is “Out of Bag".

For a bootstrap sample, the observations chosen are “in the bag’
and the rest are out.

There is a very nice way to estimate the out-of-sample error rate
when bagging.

One can show that, on average, each bagged tree makes use of
about 2/3 of the observations.

By carefully keeping track of which bagged trees use which
observations you can get out-of-sample predictions.

41

Bagging for Boston: y=medv, x=lstat.

Here is the error estimation as a function of the number of trees
based on OOB.

it

Suggests you just
need a couple of
hundred trees.

&

42

Bagging for Boston: y=medv, x=lstat.
With 10 trees our fit is too jumbly.

With 1,000 and 5,000 trees the fit is not bad and very similar.

Note that although our method is based on trees, we no longer
have a simple step function!!

bagging nirees = 10 bagging ntrees = 500 bagging nirees = 5000

43

7. Boosting Trees

Like Random Forests, boosting is an ensemble method is that the
overall fit it produced from many trees.

The idea however, is totally different!!

In Boosting we:

» Fit the data with a single tree.

v

Crush the fit so that it does not work very well.

» Look at the part of y not captured by the crushed tree and fit a new tree to
what is “left over”.

» Crush the new tree. Your new fit is the sum of the two trees.

P> Repeat the above steps iteratively. At each iteration you fit “what is left over”
with a tree, crush the tree, and then add the new crushed tree into the fit.

» Your final fit is the sum of many trees.

44

This one is actually made clearer by the mathematical notation.

This is Algorithm 8.2 (page 322) in the book.
For Numeric y:
(i) Set f(x) =0. r; = y; for all i in the training set.

(ii) for b=1,2,...B, repeat:

> Fit a tree 2 with d splits (d + 1 terminal nodes) to the
training data (X, r).

> Update f by adding in a shrunken version of the new tree:
F(x) - F(x) + A 75(x).

» Update the residuls: r; < r; — X £?(x).

(iii) Output the boosted model:

B
= AF(x)
i=1

45

Note:

A is the “crushing” or “shrinkage” parameter.

It make each new tree a weak learner in that is only does a little
more fitting.

Have to choose:

» B, number of iterations (the number of trees in the sum)
(hundreds, thousands).

» d, the size of each new tree.

»), the crush factor.

46

Note:

Boosting for categorical y works in an analogous manner but it is
more messy how you define “the part left over”, you can't just use
residuals.

Also you can't just add up the fit.

But, it is the same idea:

> fit.

crush fit.

v

fit what is left over.

v

> aggregate crushed fits.

a7

Boosting for Boston: y=medv, x=lstat:

Here are some boosting fits where we vary the number of trees,
but fix the depth at 2 (suitable with 1 x) and shrinkage = A at .2.

boosting, nree= 5 boosting, ntree= 20 boosting, niree= 100

Again, this ensemble method gets away from the crude step
function given by a single tree.

48

8. Variable Importance Measures

The ensemble methods Random Forests and Boosting can give
dramatically better fits than simple trees. Out-of-sample, they can
work amazingly well. They are a breakthrough in statistical science.

However, they are certainly not interpretable!!
You cannot look at hundreds or thousands of trees.

Nonetheless, by computing summary measures, you can get some
sense of how the trees work.

49

In particular, we are often interested in which variables in x are
really the “important” ones.

What we do is look at the splits (decision rules) in a tree and pick
out the ones that use a particular variable. Then we can add up
the reduction in loss (eg residual sum of squares) due to the splits
using the variable.

For a single tree we are done.

For bagging we can average the effect of a variable over the B
trees and for Boosting we can sum the effects.

50

Here is the variable importance for the Boston data with all the
variables obtained from a Boosting fit.

relinf
0

T T T T T T T T T T T T T
age black chas crim dis indus Istat nox ptratio rad m tax n

var

51

Here is the variable importance for the Boston data with all the
variables obtained from a Random Forests fit.

rffit

Istat

indus

nox

crim

ptratio

dis

tax

age

black

rad

chas

T T T T
0 2000 4000 6000 8000 10000 12000

IncNodePurity

Here is the variable importance for the Boston data with all the
variables obtained from a single tree fit (using rpart).

25000
|

20000
I

&
e .
g 8
o 2 1
c 2
g
S
Q
€ g
E g |
2 3
o
.8 .
5]
> . .

s .

S . .

o .

.
. .
o4 .
r T T T T T T T T T T T 1
m Istat dis nox indus. age ptratio tax crim zn black rad chas
Index

53

9. Trees, Random Forests, Boosting: The California Data

Let’s try all this stuff on the California Housing data.

That is, we'll try trees, Random Forests, and Boosting.

How will they do !!!

54

We'll do a simple three set approach since we have a fairly large
data set.

We randomly divide the data into three sets:

Train: 10,320 observations.

Validation: 5,160 observations.

Test: 5,160 observations.

We,

» Try various approaches using the Training data to fit and see
how well we do out-of-sample on the Validation data set.

» After we pick an approach we like, we fit using the combined
Train+Validation and then predict on the test to get a final
out-of-sample measure of performance.

55

Trees:

> Fit big tree on train.

» For many cp=q, prune
tree, giving trees of
various sizes.

» Get in-sample loss on
train.

» Get out-of-sample loss
on validation.

The loss is RMSE.

loss

200

T
400

tree size

600

We get the smallest out-of-sample loss (.307) at a tree size of 194.

56

Boosting:

Let's try:

» maximum depths of 4 or 10.

» 1,000 or 5,000 trees.
» \ = .2 or .001.

olb:
out-of-sample loss
ilb:

in-sample loss.

min loss of .231 is quite
a bit better than trees!

O NO Ok WN -

tdepth ntree

4
10
4
10
4
10
4
10

1000
1000
5000
5000
1000
1000
5000
5000

O O O O O O o o

lam

.001
.001
.001
.001
.200
.200
.200
.200

O O O O O O o o

olb

.414
.378
.279
.262
.232
.233
.231
.233

O O O O O O o o

ilb

.416
.380
.282
.250
.164
.098
.081
.014

57

Random Forests:
Let's try:

» m equal 3 and 9 (Bagging).
» 100 or 500 trees.

olrf is the out-of-sample loss and ilrf is the in-sample loss.

mtry ntree olrf ilrf
9 100 0.241 0.255
3 100 0.236 0.250
9 500 0.241 0.253
3 500 0.233 0.245

S w NN -

Minimum loss is comparable to boosting.

58

Let's compare the predictions on the Validation data with the best

performing of each of the three methods.

It does look like
Boosting and Ran-
dom Forests are a lot
better than a single
tree.

The fits from Boost-
ing and Random
Forests are not too
different (this is not
always the case).

logMedVal(val)

boosting

random forests

59

Test Set Performance, Boosting

Let's fit Boosting using depth=4, 5,000 trees, and shrinkage =

A=.2 on the combined train and validation data sets.

The RMSE on
test data is
.231.

This is consis-
tent with what
we had before
from the train-
validation data.

boost pred

100 105 110 115 120 125 130

test logMedval

60

Boosting gives us a measure of variable importance:

var rel.inf %4
1 medianIncome 39.065051
2 longitude 13.963321]
3 latitude 12.988301 o
4 AveOccupancy 11.055079
5 AveRooms 8.093967 ¢ %]
6
7
8
9

msrelint

AveBedrms .480044
population .708594
households .520058 21

housingMedianAge .125583

W ww e

medanincoms longtuce liude AvOccupancy AwRooms AvBedms populaion

ncex

medianIncome is by far the most important variable.
After that, it is location - makes sense.

61

The boosting package also generated plot which are supposed to
show the plot of x; vs. y for each individual x; by averaging out
the other x's.

This is supposed to CRRLEE e i
be a plot of x; vs.

y=logMedVal for each
i:172,...79_ *i: :i Ei

It is not clear this works,
or should work, when
there are interactions!!

Test Set Performance, Random Forests

Let’s fit Random Forests using m=3 and 500 trees on the
combined train and validation data sets.

Let's see how the predictions compare to the test values.

130

Not too bad!!

25

120

tprea

The RMSE is .23,
so our train-validation
results hold up.

63

Random Forests: Variable Importance:

Random Forests give a measure of variable importance. It just
adds up how much the loss decreases every time a variable is used

in a split.

Not suprisingly,
medianlncome is
by far the most

important variable.

medianincome

latitude

longitude:

AveOccupancy

AveRooms.

housingMedianAge

AveBedrms

households

population

finrf

T T
1000 1500

IncNodePurity

64

In R:

#
#load libraries
library(randomForest)
library(gbm) #boosting

#.
#

#read in California Housing Data
ca = read.csv("calhouse.csv")

#
#train, val , test

set.seed(14) #Dave Keon was captain of the Toronto Maple Leafs!!!
n=nrow(ca)

ni=floor(n/2)

n2=floor(n/4)

n3=n-nl-n2

ii = sample(l:n,n)

catrain=cal[ii[1:n1],]

caval = cal[ii[ni1+1:n2],]

catest = calii[n1+n2+1:n3],]

65

#
#fit using random forests (on train, predict on val)

#mtry is the number of variables to try

rffit = randomForest(logMedVal~.,data=catrain,mtry=3,ntree=500)
rfvalpred = predict(rffit,newdata=caval)

#

#fit using boosting

boostfit = gbm(logMedVal~.,data=catrain,distribution="gaussian",
interaction.depth=4,n.trees=5000,shrinkage=.2)

boostvalpred=predict(boostfit,newdata=caval,n.trees=5000)

#.
#

#plot (out-of-sample) fits
pairs(cbind(caval$logMedVal,rfvalpred,boostvalpred))
print (cor(cbind(caval$logMedVal,rfvalpred,boostvalpred)))

66

Let's combine the train and validation data set and refit using
boosting.
Then we'll get our out-of-sample rmse form the test data.

#
catrainval = rbind(catrain,caval) #stacks the two data frames
#
#refit boosting
boostfit2 = gbm(logMedVal~.,data=catrainval,distribution="gaussian",
interaction.depth=4,n.trees=5000,shrinkage=.2)
boosttestpred=predict (boostfit2,newdata=catest,n.trees=5000)
#
#plot test y vs test predictions
plot(catest$logMedVal,boosttestpred)
abline(0,1,col="red",1lwd=2)

#

rmse = sqrt(mean((catest$logMedVal-boosttestpred)~2))
cat("rmse on test for boosting: ",rmse,"\n")

#

#variable importance from boosting

summary (boostfit2)

67

#
#refit random forests on train-val

rffit2 = randomForest(logMedVal™.,data=catrainval,mtry=3,ntree=500)
rftestpred = predict(rffit2,newdata=catest)

#

rmse = sqrt(mean((catest$logMedVal-rftestpred)~2))
cat("rmse on test for random forests: ",rmse,"\n")
#

#variable importance from Random Forests
varImpPlot (rffit2)

68

9.1. Problem: Cars Data, Trees, Bagging, Boosting

Try trees, random forests, boosting on the usedcars.csv data.
Split the data into train, validate, and test subsets.

Do a few fits from the different approaches and see how they do
on the validation data.

Note, try it first with mileage and year, then try using all the x
variables.

Since you automatically get the right x's as factors when you use
read.csv on usedcars.csv all you have to do is y™ . and use the
full data frame.

While you are at it, how does a multiple regression do??

Pick a method you like and predict on test using train and validate
combined.
What is your out of sample RMSE?77!11

69

