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1. Classification

Our class so far — Numeric Y — Regression:
Y =f(x)+e
For example, a linear function:

f(x)=Po+Bixi+Paxo+...4 Bpxp=x'f

What about categorical or binary Y7

Can we use a linear regression?



Binary Y € {0,1}:

For example, you may have seen logistic regression

PIY =11x) = F(6). F(a) = {20

In both cases, x only affects Y through a linear combination.

However, in this class we want to learn a more generic specification
for Y | X =x.



In general, when we have categorical Y that we are trying to
predict, we say we have a classification problem.

In a classification problem, each Y belongs to one of C categories
or levels.

That is, the Y outcome must be a member of a finite set S with C
members.

Often we just use integers to label the possible outcomes:
S={1,2,...,C}.



Given x, many methods will give

P(Y:y’X)7 y €5S.

the conditional distribution of Y given x.

Some methods just give a predicted y from S.



A very large number of important problems are binary classification
where C = 2 so that we are trying to guess which of two possible
outcomes will occur.

» Will the account default?
» Will the customer leave (churn) ?

» Will the customer buy (target marketing) ?

In binary problems, we often label Y with 0 and 1, so that
Y eS={0,1}.

While the big ideas (such as the bias-variance trade-off) are the
same for predicting a categorical variable and a numeric variable,
some of the details of our modeling are necessarily different.



kNN:

Given test x and training (x;, yi):

Numeric Y:

» find the k training observations with x; closest to x.

» predict y with the average of the y values for the neighbors.

Categorical Y:

» find the k training observations with x; closest to x.

» predict Y with the most frequent of the y values for the
neighbors.

» estimate P(Y = y | x) with the proportion on neighbors
having Y =y.



Example, Forensic Glass:

Can you tell what kind of glass it was from measurements on the
broken shards??

Y: glass type, 3 categories.
Y € S = {WinF, WinNF, Other}.

WinF: float glass window
inNF: non-float window
Other.

x: 3 numeric x's:

x1 = RI: refractive index
x> = Al

x3 = Na



Is Y related to xo =Al?
How do we plot a categorical Y vs a numeric x?

For each level of Y, pick off the subset of the data such that Y is
at that level and then display the x values using a boxplot.

|
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For big xo =Al, “Other” seems more likely for Y.



Plot y vs. each x.
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x» =Al looks like a winner, but there may also be information
about whether Y =WinF in x; =RI, and information about
whether Y =Other in x3 =Na.



How does kNN use the x's to predict the categorical Y7
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With just Al and RI:
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If (AlLRI) = 7?7, what is prediction for Y?

11



Since we only have 214 observations we are just going to look at
in-sample fit.

We used kNN with k = 10 and stored the result in near.

near$fitted[1:50]

[1] WinF WinNF WinNF WinF WinF WinNF WinF WinF WinF WinF WinNF WinF
[13] WinNF WinF WinF WinF WinF WinF WinF WinNF WinNF WinF WinF WinF
[25] WinF WinF WinF WinF WinF WinF WinF WinF WinF WinF WinF Other
[37] WinF WinF WinF WinF WinF WinF WinF WinF WinF WinNF WinNF WinF
[49] WinF WinF
Levels: WinF WinNF Other

> near$prob[1:5,]
WinF WinNF Other
[1,] 0.6 0.3 0.1

,1 0.4 0.4 0.2
,J 0.1 0.9 0.0
,1 0.7 0.3 0.0
,] 0.8 0.2 0.0
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The two-way table relating the observed Y with the predicted Y is

called the confusion matrix.

Data label on columns, “predicted” label on rows.

So, there are 58+11+1 observations with Y =WinF.
Of those 11 were predicted to be WinNF.

WinF WinNF Other
WinF 58 13 14
WinNF 11 57 12
Other 1 6 42

We like the diagonals big!

Missclassification rate: (214-(58+57+42))/214 = 0.27

pretty good !!
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How good are the probabilities 77

The first plot is P(Y = WinF | x) vs. y=glass type.
The second plot is P(Y = WinNF | x) vs. y=glass type.
The third plot is P(Y = Other | x) vs. y=glass type.

wink i omer
type

pretty good !!
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Random Forests:
Given test x and training (x;, y;):

Numeric Y:

> Build B big trees.
» predict y with the average of the predictions from the B trees.

Categorical Y:

» Build B big trees.

> predict y with most frequently predicted value from the B
trees. We let the trees vote.

» estimate P(Y = y | x) with the average of the estimates from
the B trees.
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Boosting:
We use the same idea.

Iteratively:

(i) Given the current fit, fit “what is left over”.

(i) Add a crushed version of the fit from the first step into the
overall fit.

For numeric Y, “what is left over” is the residuals.

For categorical Y we skip the details.
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Example: Predicting Delinquency:

This is a kaggle competition data set.
There are 150,000 observations in the kaggle training data.

The Y is:
“Person experienced 90 days past due delinquency or worse: Y/N"

17



We split the kaggle training data into a 50% train and 50% test.
The kaggle test does not come with y !
We made y=1 if delinquent and 0 else.

> table(trainDf$y)

0 1
69971 5029
> 5029/75000
[1] 0.06705333

6 to 7 % of accounts are delinquent.
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n=150,000.

There are 9 x variables.

For example,

DebtRatio:

Monthly debt payments, alimony,living costs divided by monthly

gross income: percentage

age:
Age of borrower in years: integer

19



For example, it looks like older people are less likely to be
delinquent.
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We ran boosting, random forests, and logit on train.

From each method we get p, the estimate of P(Y =1 x) for
each x in our test data.

Let's graphically compare the p to y (on test).
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Each plot relates p to y.

Going from left to right, p is from logit, random forests, and
boosting.

Boosting and random forests both look pretty good !!

Both are dramatically better than logit !!.



2. The Lift

The lift curve is a popular method for graphically displaying the
effectiveness of an estimate of p = P(Y =1 | x) for a binary Y.

You have a vector of y and a corresponding vector of p.
Each of the y is either a 0 or a 1.

You get to choose observations, and the faster you find all the 1's
the better!!

If you believe p, your first choice will be the one with the biggest p
your second choice will be the one with the second biggest p and
so on.

That is, you would sort so that we go from biggest p to smallest
and then take the observations in that order.

We then plot (% observations taken) vs. (% 1's found).
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Here is the lift curve for the boosting p's.

% of successes

% tried

So, for example, from only 20% of the data, you have found 72%
of the 1's.

The line represents the average performance you would get by just

choosing randomly. o



Here is the lift curve for all three p's on the same plot so we can
compare.

% of successes

% tried

Boosting and random forests are both much better than logit!!!
Boosting better then RF by a bit.
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Example: Tabloid Target Marketing Data

Y is 1 if a customer responds to a promotion (mailed a “tabloid”)

and 0 otherwise.

4 x's from the data base (selected from many other similar ones).

» nTab: number of past orders.

moCbook: months since last order.

v

v

iRecMerl : 1/ months since last order in merchandise
category 1.

v

[IDol: log of the dollar value of past purchases

10,000 in train; 5,000 in test.

Note: in the train, only 2.58 % respond.
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You could get 60% of the potential customers by only mailing to
20%.

Yo OT successes

o T T T T T
00 02 04 06 08 10

% tried

Suppose you had a budget that only allowed you to mail to 20% of
the customers. This would be a big improvement over guessing!

In this case, logit actually wins!!

But not so dramatically as in the delinquency application. 27



A little background on the Tabloid example and the delinquency
example.

Why do the tree methods kill in delinquency and logit look pretty
good in Tabloid?

We got the Tabloid data from a company that has a lot experience
using logit models to do target marketing.

They have spent a lot of time learning what variables (and
transformation) make logit work.

If you look at the delinquency data, some of the x's “are a mess”.
Here is where an automatic method based on trees can work a lot
better than fitting a logit without working on your x's.

Of course, there could also be some interesting non-linearity logit
cannot capture!!
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3. Loss Functions

An important aspect of our approach we will have to consider is
the choice of loss function.

While losses that are problem specific are often preferable (e.g how
much money lost) it is often useful to have generic loss functions.

We use loss measures to assess our out-of-sample performance
(e.g. when doing cross-validation).

We also use loss measures in estimation.

For example to fit a tree we use loss on the training data and a
measure of tree complexity.

29



While people mostly use RMSE and MAD (|Y — Y| = |Y — f(x)])
for numeric Y, choosing a loss for categorical Y can be tricky.

For example, the tree package gives you the option of choosing
deviance loss or the Gini criterion when fitting trees.

We'll review RMSE and then discuss the missclassification rate and
deviance as performance measures for categorical outcomes.

30



For numeric Y we often use

SE=Y (Y;— Yi)?, MSE= l515, RMSE = v MMSE
i=1 m

A

Note that for a (Y, Y) pair we have the loss L(Y,Y) = (Y — Y)?
so that

m

SE = L(Y;, V)

i=1

31



Note that given (x,y), we often we have Y = f(x)
so can could also write

L(x,y) = (y — F(x))?

The loss when we predicted using x and y actually occurred.
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Missclassification Rate:
For categorical data, an obvious loss is the missclassification rate.

If Y,\A/G{I,Z,...,C} we can let

. 0, Y=Y
L(Y’Y):{ 1, Y£Y

If you guess right, you lose nothing, if you are wrong, you lose 1.

Then

is the fraction miss-classified.

We saw this in the forensic glass example. 33



Deviance Loss:

For a lot of problems, missclassification is not useful because while
the model has fit, it is usually pretty obvious what the most likely
category is.

For example, in our target marketing example, the probability of a
response is almost always less than .5 so if you just predict “they
won't respond” you do pretty good in terms of missclassification,
but that is not helpful.
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Here is the test plot of p (from logit) and y=respond for the
tabloid data.

logit

00 01 02 03 04 05 06 07

T
0 1

respond

While the model works, it is pretty useless to predict a response if
p>.51

Only 112 out of 5,000 actually responded so if we just say no-one

responds the MR is 2%.
35



Suppose we have an (x, y) pair where x is a vector of predictors
and y is the corresponding outcome for a categorical Y.

Our model gives us P(Y =y | x).

We could say a measure of how well our model worked for this
observation is just P(Y =y | x).

If the model says what happened is likely, that is good !!!

36



The deviance measure of how bad things are is

L(x,y) = =2 log(P(Y =y | x))

v

want P(Y =y | x) big.
want log(P(Y =y | x) big.
want —2 log(P(Y =y | x)) small.

v

v

v

the 2 is a convention from likelihood analysis.

This is our measure of loss when we predicted using x and y
actually occurred.
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If you say a certain y outcome is likely and then it happens, your
loss is small.

deviance loss

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

model prob of y that happened

If you say a certain y outcome is very unlikely and then it happens,

our loss is big.
y g 38



Then for data (x;, yi) (train) or (test)

Total loss is

> Lxiyi) =Y —2log(P(Y = yi | 7))

39



Example:

A tiny data set with 6 observations and model fits from model 1
(P1(Y =y | x)) and model 2 (P2(Y =y | x)).

x y P1(Y=1]x) P1(Y=0[x) devi
[1,] 10 0.1 0.9 0.210721
[2,] 20 0.1 0.9 0.210721
[3,] 30 0.1 0.9 0.210721
[4,1 41 0.9 0.1 0.210721
[6,1 50 0.9 0.1 4.605170
[6,] 61 0.9 0.1 0.210721

x y P2(Y=1|x) P2(Y=0[x) dev2
[1,]10 0.5 0.5 1.386294
[2,] 20 0.5 0.5 1.386294
[3,1 30 0.5 0.5 1.386294
[4,1 41 0.5 0.5 1.386294
[6,1 50 0.5 0.5 1.386294
[6,] 61 0.5 0.5 1.386294

Note: -2*log(.5) = 1.386294, -2*log(.1) = 4.60517, -2*log(.9) = 0.210721
Deviance under Model 2: 6*1.386294 = 8.317764

Deviance under Model 1: 5*0.210721 4+ 4.605170 = 5.658775 .
4



What happens if we fit a tree to this data set in R?

xydf = data.frame(x=1:6,y=as.factor(c(0,0,0,1,0,1)))
temp = tree(y~x,xydf,control=tree.control(6,mincut=3,minsize=6))
print (temp)
node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 6 7.638 0 ( 0.6667 0.3333 )
2) x < 3.5 3 0.000 0 ( 1.0000 0.0000 ) *
3) x >3.533.819 1 ( 0.3333 0.6667 ) *

The deviance from the left child is
3*(-2*log(1)) = 0.

The deviance from the right child is
2*(-2*log(2/3)) + (-2*log(1/3)) = 3.819085

41



If we print the R summary of the tree we get:

> print (summary (temp))

Classification tree:

tree(formula = y ~ x, data = xydf, control = tree.control(6,
mincut = 3, minsize = 6))

Number of terminal nodes: 2

Residual mean deviance: 0.9548 = 3.819 / 4

Misclassification error rate: 0.1667 = 1 / 6

We get the missclassification rate and deviance as summaries.

The “average deviance” is obtained by dividing by
(n — number of bottom nodes) for reasons we skip.
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Example:

Previously, we looked at boosting and random forest predictions for
the kaggle delinquency data.

How did we choose the settings?

We tried a variety of settings, fit on train and then computed our
loss on test.

43



Random Forest settings:

mtry ntree

9

D W N

3
9
3

500
500
1000
1000

Boosting settings:

tdepth ntree shrink

2

0 NG WN R
INEVCEFNECENECEEN

1000
1000
5000
5000
1000
1000
5000
5000

0.
.10
.10
.10
.01
.01
.01
.01

O O OO OoOOoOOo

10
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Here are the out-of-sample (test) deviance losses for the logit
model, 4 random forest models, and 8 boosting models.

34000
I
>

A logit
A
4 boost

loss on Test
30000 31000 32000 33000
I I I I

29000
I

28000
I

27000
I
>
>
>

Index

Clearly boosting looks good.
The results we showed previously used the minimal test loss settings.



The test p for a sample of 5,000 test observations.

Boosting and random forests are picking up some of the same
signal.
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Notes:

The deviance is one of two options the tree package gives for loss
on the training data.

The in-sample deviance is the -2 x log-likelihood for a
classification model.

The logit estimates of the coefficients (the 3's) are chosen by
minimizing the (in-sample) deviance which is equivalent to
maximizing the likelihood.

While the deviance is not terribly interpretable, it gets used a fair
amount in statistics.

For binary classification problems an obvious loss is
ly = P(Y =1|x)| where y is 0/1.

a7



4. Decision Theory and Expected Utility

We have looked and ways to evaluate the predictive power of our
models out-of-sample.

However, we may be able to use the estimated probabilities to
make intelligent decisions.
Consider the target marketing example.

If, given x, the probability of a response is big, then it should make
sense to target the customer.

Alternatively, if our model suggest there is a very low chance they
will respond, it may be a waste of money.

How can we quantify this?

48



Rather than using a generic loss, we should think about our actual
decision.

Let's suppose it costs $.80 (80 cents) to mail the promotion (in
our tabloid example).

Let's suppose that (on average) a customer spends $40, if they
respond.

If they respond we get 40-.8 = 39.20.

If they do not respond we get -.8.

49



Suppose the probability (given x) they respond is .05.
Let M denote the random variable which is our money payout.

The distribution of M is:

m  Pr(M = m)
-.80 .95
39.20 .05

Note that in thinking about our decision, it makes seems simpler
to think about our gain rather than our loss.
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m  Pr(M = m)
-.80 .95
39.20 .05

Decision theory says we should act if our expected utility is
positive.

E(U(M)) = .95 U(—.8) + .05 U(39.20)

Often we keep things simple and use U(m) = m.

E(M) = .95 (—.8) + .05 (39.20) = 1.2 > 0.
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So, if x give us a p of .05 we should do the targeting.

What is the probability cutoff such that if p is bigger than the
cuttoff, we should target?

—8(1—p)+p(39.2) =0= p=.8/40 = .02.

If p > .02, we should do the targeting.
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Here is the confusion matrix where dotarget indicates whether
p > .02 and the profit for logit, random forests, and boosting.
logit:

dotarget 0 1
FALSE 3730 37
TRUE 11568 75

75%40 - (75+11568)*(.8) = $2013.6

random forests:

dotarget 0 1
FALSE 4223 59
TRUE 665 53

53%40-(53+665)*.8 = $1545.6

boosting:

dotarget 0 1
FALSE 3830 43
TRUE 1058 69

69%40 - (69+1058)*.8 = $1858.4
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As we saw with our other approaches, logit actually looks good for
the tabloid problem.

Now we have an actual dollar amount for how much better it is!!

Boosting is not too bad and much better than random forests.

In the delinquency problem, boosting and random forests looked
much better than logit.

It would be an interesting problem to try to put a dollar amount on
how much!
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5. The ROC Curve

Lift and ROC are two popular methods for assessing the quality of
a classifier for a binary y.

Lift is particularly popular in Marketing.

ROC stands for the incomprehensible term “receiver operator
characteristics”.

Both look at missclassification rates for various values of s using
the rule: classify Y =1if P(Y =1|x) > s.
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If we classify Y =1 if P(Y =1 x) > .02 this is our confusion
matrix.

dotarget 0 1
FALSE 3830 43
TRUE 1058 69

ROC looks at:

» TP (true positive), % of y=1 correctly classified:
69/(43+69) = 0.6160714

» FP (false positive), % of y=0 incorrectly classified:
1058/(3830+1058) = 0.2164484
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dotarget 0 1
FALSE 3830 43
TRUE 1058 69

Lift looks at:

» TP (true positive), % of y=1 correctly classified: .62.

» N, % classified as 1: (1058+69)/(total number) = 1127/5000
= .2258.

TP: fraction of 1's out there you got.

N: fraction of data you tried.
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We then just compute these values for s between 0 and 1
and plot them.

get fewer yhat=1 as s gets bigger get fewer of the y=1 as s gets bigger fewer wrong yhat=1 as s gets bigger

™
FP

classify as1 < P(Y =1|x) >s.

» TP (true postive), % y=1 correctly classified
» FP:(false positive), % y=0 incorrectly classified
» N, % classified as 1.

All three quantities go from 1 to 0, as s goes from 0 to 1.
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ROC plots FP vs. TP, and lift plots N vs. TP.
Want TP big and FP small.

ROC _ Lift

Note that as you go from left to right in these plots, s is
decreasing.

The line is drawn at “y=x".
It represents the performance you would get if Y was independent

of X.
59
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