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Discussion

Perdro Domingos’ article



Linear classification

We started talking about classification using perceptron

X1

X2

Xp

features  weights

V=1 ifbo+ X0 bx >0
Y=0 if bo+ Y7 bx <0

How do we get probability P(Y =1 x) ?



Logistic regression

Model for conditional distribution of Y given X = x

exp(bo + Zf:l bj - X))

b)) =P(Y =1]|x;b) =
pl(Xy ) ( ’X,b) 1+eXp(b0+Zf:1bJXJ)

1
b)) =P(Y = b)) =
pO(X ) ( O’X ) 1+exp(b0+2j‘):1 bJXJ)

The log-odds of class 1 is a linear function of X

log <P1(x; b)) _ boJribj X

pO(X; b) j=1



Notation convention

Recall that x = (x1,...,Xp) is our feature vector.
It is common to denote xp = 1 and write x = (1, x1,...,Xp).

This allows us to write

Now we can write

_ exp(x T b)
PO = 11xb) = 4 o h)

and we will also be able to present our procedures without doing
anything special for our intercept term (also called bias term).



Representation with logistic regression

Logistic sigmoid function
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A linear function x b can take values from —oo to co. By passing
it through sigmoid, we get values in [0, 1].

These values also sum to 1 to make a probability.



Logistic sigmoid function
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Step 1: Linear combination

z F(z)

_ T -3 0.05

z=x"b -2 012

-1 027

Step 2: Nonlinear transformation 0 05
1 073

2 088

exp(2) 3 095

p(yzl\x;b):F(z):m
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Suppose that ¥; = 1if P(Y =1|z) > 0.5 and Y; = 0 otherwise.

When do we assign a new observation to a positive class? For what
values of z do we have Y =17

What is the difference compared to perceptron?



Representation with logistic regression
X1

X2

exp(xT
> I — P(Y=1]xb)= 1+ef<(|.)(x177)b)

b,

Xp
features  weights

A close couising to perceptron. Think about putting a rug over the
threshold.

If we classify a new observation x as positive when p;(x; b) > 0.5,
then Y=1 ifx"h>0
Y=0 ifxTh<0



Example: Predicting default

“Default” data set from ISLR package

default student

df = Default
head (df)

##

##t 1 No
## 2 No
## 3 No
## 4 No
## 5 No
## 6 No

No
Yes
No
No
No
Yes

balance

729.
817.
1073.
529.
785.
919.

5265
1804
5492
2506
6559
5885

income

44361.
12106.
31767.
35704.
38463.

7491.

625
135
139
494
496
559
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##  (Intercept) balance

## -10.651330614

0.005498917

exp(—10.65+xx0.0055)

pi(x) = T+exp(—10.65+x+0.0055)

2500

0 1000

T |
No Yes
default




Simulated example in 2D

Futher away an observation is from the decision boundary, more
certain its label.



Example: Predicting default
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How do we learn parameters?

Our model for Y given X = x is determined by the vector b.

exp(x T b)

Recall that P(Y =1 | x; b) = TrenGTh)-

How do we find a good b?

We will minimize the deviance:

n
b= argminZ—2 X IogP(Y =y ‘ X,-;b)
i=1

We need to find b that minimizes Y. ; L(yi, xi; b).



Another way to represent the loss: (Details)

Another common way to write logistic regression objective. . .

Consider an example (x;, y;)

> If y; = 0, then deviance is —2 x log(1 — p1(x;; b))
» If y; = 1, then deviance is —2 X log(p1(x;; b))

Another way to write loss for this example

L(yi, xi; b) = —log(P(Y = yi | x;; b))
= —(1 - yi) log(1 — p1(xi; b)) — yilog p1(xi; b)

Loss on training data

J6) = 3 Ly )



Minimization procedures
Find b that makes the loss J(b) as small as possible.

Many different numerical procedures — treat them as black boxes.
Still you need to know some high-level details.

Optimization proceedures commonly need to compute

» loss J(b)
d1J(b)
» (partial) derivative of the loss VJ(b) = :
0pJ(b)
» second (partial) derivative
O11J(b) 0O12J(b) ... 0O1pJ(b)

NTE 0J(b) 222J(0) - 01,J(b)

O d(B) Bpad(b) ... BppJ(b)



Minimization procedures
Derivative free minimization

» require J(b) only
» useful when computing VJ(b) is very expensive

Gradient descent and other first order methods

» require J(b) and VJ(b)

» useful when dealing with large amounts of data

> many iterations to get high accuracy solution, but each
iteration is cheap (We do not care about high accuracy. Why?)

Second order methods (Newton's method)

» require J(b), VJ(b), and AJ(b)

» few iteration to find minimum, but each iteration can be
expensive

» R packages (that | have seen) implement this



Gradient descent
Suppose that we want to find b that minimizes the following
function

J(b) =1.2(b—2)>+3.2

Closed-form solution




Set b® = 0. Iteratively update b*™1 = bt — ndJ(b?).

7 is the step size. Also known as the learning rate.

eta=0.6
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eta=0.01

Closed-form solution

(a)c




eta=0.83

Closed-form solution

Gradient Descent

(a)c




Gradient descent

The learning rate 7 plays a crucial role in convergence.
For multivariate problems, where b = (b, b1, ..., bp), the gradient

descent takes the following form:

» Start with 6% = (0,...,0).
» In each iteration, t = 1,2, ... update

bjt+1 = bf —nd;J(b"), forall j=0,1,...,p
When to stop?

|J(bt) — J(bt1)] is small
|bt — bt~1| is small
|VJ(bY)] is small

vV v vV Y
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Gradient descent
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Gradient descent for logistic regression

Logistic regression loss per example
L(yi, xi; b) = —(1 — yi) log(1 — p1(xi; b)) — yi log p1(xi; b)
Gradient of the loss per example
9iL(yi, xii b) = (p1(xi; b) — yi)x;

The overall gradient

0;J(b) = Z(Pl(xi; b) — yi)xij



Gradient descent for logistic regression

Initialize b = (0, ...,0)
repeat
Let g = (0,...,0) be the gradient vector
for i = 1:ndo
pi = exp(x b)/(1 + exp(xT b))
€ITor] = pj — i
g = g +error; - X;
end
b=b-n-g/n
until until convergence;

Note that algorithm uses all observations to compute the gradient.

This approach is called batch gradient descent.



Stochastic gradient descent for logistic regression

Initialize b = (0, ...,0)
repeat
Pick observation i

pi = exp(x; b)/(1 + exp(x;” b))
eITor; = pj — Yi
b = b — n(error; - x;)

until until convergence;

Coefficient b is updated after each observation.

In practice, mini batch is often used.

» Compute gradient based on a small subset of observations
» Make update to coefficient vector



Extending logistic regression to K > 2 classes

Choose class K to be the reference class

Represent each of the other classes as a logistic function of the odds
of class k versus class K




Extending logistic regression to K > 2 classes

The conditional probability for class k # K

exp(x " by)

P(Y =k|x)=
( ) 1+ K exp(xThy

The conditional probability for class K

1

P(Y =k|x)=
( ) 1—|—Z,K:_11exp(be/

Fitting can be again done using a number of procedures that will
simultaneously obtain coefficients for each class by, ..., bx_1



Avoiding overfitting
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logistic regression

DA



logistic regression —— quadratic with interactions

DA



logistic regression —— cubic with interactions

DA



logistic regression —— 7th degree polynomial




lr_fit_7$coefficients[1:10]

##  (Intercept) x.1.0 x.2.0
## -1.100958e+15 -1.733179e+15 -9.387873e+13
## x.3.0 x.4.0 x.5.0
## 3.202179e+15 -1.736921e+15 -2.390935e+13
## x.6.0 x.7.0 x.0.1
## 1.699264e+14 -2.496843e+13 1.283042e+15
## x.1.1

## -7.430262e+15



Avoiding overfitting using L1/L2 penalization

Find b that minimizes

1—a P ) P
J(b) + A 5 b? +aZybj|

Jj=1 Jj=1

This is known as an elastic net penalty (see glmnet package)

A is the penalty parameter

> large value: prefer simple models
» small value: prefer complex models (no regularization)

« is the elasticnet mixing parameter

» o = 0: ridge penalty
» o = 1: lasso penalty



logistic regression —— lasso

DA



logistic regression —- ridge penalty

DA



Example: Predicting quality of restaurant

Can we predict quality of a restaurant based on a review?

# data from textir package
data(we8there)
dim(we8thereCounts)

Data are very high dimensional.
But fortunately not many words per document.

See code in weSthere.R



An example of a positive review

we8thereCounts[1, we8thereCounts[1, ]!=0]

## even though larg portion mouth water

it 1 1 1
## red sauc babi back back rib
#it 1 1 1

## chocol mouss veri satisfi
## 1 1



An example of a negative review

we8thereCounts[6100, weS8thereCounts[6100, ]!=0]

## never return just few one side
## 1 1 1
#Hit tri make go box order wrong
## 1 1 1
## place clean order just seat one
## 1 1 1

#it side build
## 1



we8thereRatings[1:3,]

##  Food Service Value Atmosphere Overall

## 1 5 5 5 5 5
## 2 5 5 5 5 5
## 5 5 5 4 4 5

# transform rating into {0, 1}

y = ifelse(we8thereRatings$0verall>3, 1, 0)

y = as.factor(y)

glm_fit = cv.glmnet(x = we8thereCounts, y = vy,
family = "binomial",
# lasso - 1, ridge - 0
alpha = 1,
nfold = 5



Cross validation for Lasso

1986 1975 1973 1988 1957 1927 1841 1705 1489 1167 833 544 226 84 31 3 0
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Coefficients for Lasso

1987 1984 1863 1207 147
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glm.coef = coef(glm_fit$glmnet.fit, s=glm_fit$lambda.lse)
o = order( glm.coef, decreasing = TRUE )

# positive coefficients
glm.coef@imnames[[1]] [o[1:10]]

## [1] "can wait" "between two"

## [3] "beef sandwich" "high recommend"
## [5] "friend help" "best meal"

## [7] "food delici" "(Intercept)"

## [9] "melt mouth" "wonder experi"

glm.coef [0o[1:10]]

## [1] 1.2741278 1.2633252 1.2482930 1.2121773
## [5] 1.0930038 1.0704775 1.0245261 1.0169857
## [9] 1.0118636 0.9496681



# mnegative coefficients
glm.coef@imnames[[1]] [tail(o,10)]

## [1] "gone down" "never go"

## [3] "servic terribl" "food terribl"
## [5] "stay away" "never return"
## [7] "far better" "mediocr best"
## [9] "veri rude" "extrem rude"

glm.coef [tail(o,10)]

## [1] -1.842253 -1.875542 -1.892049 -1.939003
## [5] -1.949946 -2.025724 -2.107226 -2.109239
## [9] -2.191691 -2.348292



Cross validation for Ridge regression

Binomial Deviance
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Coefficients for Ridge
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Avoiding overfitting using early stopping

Common practice is to stop gradient descent before it reaches
optimum

One monitors peformance of the current solution on the validation
data

If the performance starts to deteriorate, stop the descent

Why should this work?



Summary: Logistic regression

Learns conditional probability distribution

Linear desicion boundary. We can craft non-linear features (feature
engineering), but the decision is going to be linear in the non-linear
features.

Gradient descent starts with an initial vector and modifies it to find
best parameter.
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