
Neural Networks

Carlos Carvalho, Mladen Kolar and Robert McCulloch

10/21/2015

Neural networks

Our learning algorithms so far:

Training data: (xi , yi)n
i=1 −→ Machine Learning −→ y = f̂ (x)

All of the procedures directly work on input features.

What if the input features are not informative?

Neural networks

Feature engineering — handcrafting transformations

Training data: (xi , yi)n
i=1 −→ Φ −→ (Φx (xi),Φy (yi))n

i=1

Here Φ is designed by a human.

(Φx (xi),Φy (yi))n
i=1 −→ Machine Learning −→ Φy (y) = f̂ (Φx (x))

This process is expensive and time consuming.

Example: Handwritten Digit Recognition

How to represent image?

How informative is each pixel?

Logistic regression trainned on pixel values gives ~90% accuracy.

Example: ALVINN

Autonomous Land Vehicle In a Neural Network

Sharp
 Left

Sharp
Right

4 Hidden
 Units

30 Output
 Units

 30x32 Sensor
 Input Retina

Straight
 Ahead

Video: http://watson.latech.edu/book/intelligence/intelligenceOverview5b4.html

 http://watson.latech.edu/book/intelligence/intelligenceOverview5b4.html

Model of a neuron

����

����

��
��
��
��

x2

x1

xp

bp
b0

b1

features

∑

1
weights

τ(xT b)

b2

Other nonlinear activations

−
1.

0
0.

0
1.

0

tanh

0
1

2
3

4
5

rectified linear unit (ReLU)

Multilayer Perceptron

2 Layers of Neurons

I 1st layer takes input x
I 2nd layer takes output of 1st layer
I The last layer is the output

Multilayer Perceptron

The activities of the neurons in each layer are a non-linear function
of the activities in the layer below.

Can approximate arbitrary functions

I Provided hidden layer is large enough
I “fat” 2-layer network

1 hidden layer details

z(2)
1 = b(1)

10 + b(1)
11 x1 + b(1)

12 x2 −→ a(2)
1 = g(z(2)

1)

z(2)
2 = b(1)

20 + b(1)
21 x1 + b(1)

22 x2 −→ a(2)
2 = g(z(2)

2)

z(3)
1 = b(2)

10 a(2)
0 + b(2)

11 a(2)
1 + b(2)

12 a(2)
2 −→ a(3)

1 = g(z(3)
1)

Example: Simulated XOR

neural network −− 1 hidden layer with 2 neurons

Weights in hidden layer

h2o.biases(model, vector_id = 1)

C1
1 -7.657945
2 -14.447970

h2o.weights(model, matrix_id = 1)

x.1 x.2
1 -9.006323 8.071541
2 16.291693 -17.266787

Feature transformation

tmp.df = as.h2o(data.frame(x.1=c(-1, -1, 1, 1),
x.2=c(-1, 1, -1, 1)))

trans.features = h2o.deepfeatures(model, tmp.df, layer = 1)
as.matrix(h2o.cbind(tmp.df, trans.features))

x.1 x.2 DF.L1.C1 DF.L1.C2
[1,] -1 -1 0.9999927 1
[2,] -1 1 0.9926779 -1
[3,] 1 -1 0.9903638 -1
[4,] 1 1 -0.6600429 -1

Weights in output layer

h2o.biases(model, vector_id = 2)

C1
1 3.231547
2 -3.539516

h2o.weights(model, matrix_id = 2)

C1 C2
1 -2.574277 4.265737
2 0.814248 -1.587351

neural network −− 1 hidden layer with 5 neurons

neural network −− 1 hidden layer with 10 neurons

neural network −− 1 hidden layer with 10 neurons with regularization

Example: Tabloid data

See tabloid.h2o.R

For example of how to use nnet package, see tabloid.nnet.R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

phatL$logit

ph
at

L$
h1

n1
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% tried

%
 o

f s
uc

ce
ss

es
logit
h1n10

Deep neural network

If there is more than one hidden layer, networks are called “deep”
neural networks.

Tabloid again

logit

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

p1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.04 0.06 0.08 0.10 0.12

0.
04

0.
06

0.
08

0.
10

0.
12

p1.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% tried

%
 o

f s
uc

ce
ss

es
logit
h1n10
h2n10.10

Grid search

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% tried

%
 o

f s
uc

ce
ss

es

Fitting neural networks

Gradient descent + chain rule + lot of tricks

I We will not provide details
I The procedure is called backpropagation

Difficult to train because there are many local minima

I Train multiple nets with different inital weights
I Initialize weights near zero
I Therefore, initial networks near-linear
I Increasingly non-linear functions possible as training progresses

Fitting neural networks
Adaptive Learning Rate

I Automatically set learning rate for each neuron based on its
training history

I ADADELTA:
http://www.matthewzeiler.com/pubs/googleTR2012/
googleTR2012.pdf

Momentum

I bt+1 = bt − η · ∇J(b) + α(bt − bt−1)
I α is the momentum parameter
I helps avoiding stuck in a local optimum

Regularization

I L1 penalty on the parameters
I L2 penalty on the parameters (weight decay parameter)
I Early stopping

http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf

Fitting neural networks

Dropout:

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Fitting neural networks

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Fitting neural networks: Tips from H2O

I more layers for more complex functions (more non-linearity)
I more neurons per layer to fit finer structure in data
I add regularization (max_w2=50 or L1=1e-5)
I do a grid search do get a feel for parameters
I try “Tanh,” then “Rectifier”
I try dropout (input 20%, hidden 50%)

See also http://yyue.blogspot.com/2015/01/
a-brief-overview-of-deep-learning.html

http://yyue.blogspot.com/2015/01/a-brief-overview-of-deep-learning.html
http://yyue.blogspot.com/2015/01/a-brief-overview-of-deep-learning.html

Example: MNIST

Famous data set in machine learning community

I http://yann.lecun.com/exdb/mnist/

Even today: Kaggle competition

I https://www.kaggle.com/c/digit-recognizer

Online demo

I http://cs.stanford.edu/people/karpathy/convnetjs/
demo/mnist.html

http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/c/digit-recognizer
http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

LeNet5: convolutional neural network

See http://yann.lecun.com/exdb/lenet/

http://yann.lecun.com/exdb/lenet/

From: http://neuralnetworksanddeeplearning.com/chap6.html

http://neuralnetworksanddeeplearning.com/chap6.html

From: http://neuralnetworksanddeeplearning.com/chap6.html

http://neuralnetworksanddeeplearning.com/chap6.html

From: http://neuralnetworksanddeeplearning.com/chap6.html

http://neuralnetworksanddeeplearning.com/chap6.html

From: http://neuralnetworksanddeeplearning.com/chap6.html

http://neuralnetworksanddeeplearning.com/chap6.html

From: http://neuralnetworksanddeeplearning.com/chap6.html

http://neuralnetworksanddeeplearning.com/chap6.html

Mistakes made by LeNet5

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, november 1998.

A simpler architecture

From: http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi

Practical consideration

Standard trick — expand the set of examples

I small distortions, scaling, rotation, . . .

What else needs to be done to make system useful?

Advantages and disadvantages

Pros:

I Tolerance to noise
I Able to capture complex signals
I In some applications lead to the state-of-the-art performance
I Fast at test time

Cons:

I Very hard/impossible to interpret (black box method)
I Can easily overfit
I Need a large amount of data to train
I Slow to train

Learning representation

Use the output of the last layer as a representation of your data.

Fit a model with this representation.

Autoencoder

Network trained to reproduce its input at the output layer.

Usually tie the weights that go into and out of the hidden layer.

Autoencoder
Loss function

I For real valued inputs, try to find weights such that

1
2

∑
k

(xk − x̂k)2

is minimized
I For binary input cross entropy is used, which is similar to

deviance

Fitting autoencoder

I Same tricks as before
I Greedy learning of stacked autoencoders
I https://www.cs.toronto.edu/~hinton/science.pdf

https://www.cs.toronto.edu/~hinton/science.pdf

Autoencoder: Why are they useful?
Learning compressed representation of the input distribution
(dimensionality reduction)

Autoencoder structure: 784 — 1000 — 500 — 250 — 2
https://www.cs.toronto.edu/~hinton/science.pdf

https://www.cs.toronto.edu/~hinton/science.pdf

Autoencoder: Why are they useful?
Information retrieval: 804,414 newswire stories

Autoencoder structure: 2000 — 500 — 250 — 125 — 2
https://www.cs.toronto.edu/~hinton/science.pdf

https://www.cs.toronto.edu/~hinton/science.pdf

Autoencoder: Why are they useful?

I unsupervised pretraining of weights (many unlabeled images,
but only few labeled)

I anomaly detection

Some success stories

I Google voice transcription
http://googleresearch.blogspot.com/2015/08/the-neural-networks-behind-google-voice.html

I Google voice search
http://googleresearch.blogspot.com/2015/09/google-voice-search-faster-and-more.html

I Google translate app
http://googleresearch.blogspot.com/2015/07/how-google-translate-squeezes-deep.html

Some success stories

I Facebook face recognition
http://www.technologyreview.com/news/525586/facebook-creates-software-that-matches-faces-almost-as-

well-as-you-do

I Paypal fraud detection
http://www.slideshare.net/0xdata/paypal-fraud-detection-with-deep-learning-in-h2o-

presentationh2oworld2014

Additional resources

I Free online book by Michael Nielsen
http://neuralnetworksanddeeplearning.com/
(explains backpropagation well)

I http://deeplearning.net/tutorial/
Excellent tutorial using Theano library in Python

http://neuralnetworksanddeeplearning.com/
http://deeplearning.net/tutorial/

