
Recommender Systems

Carlos Carvalho, Mladen Kolar and Robert McCulloch

11/05/2015

Tools so far

We already know many things that we can use to recommend new
content.

I predict rating of a restaurant
I predict if a user is going to respond to a marketing campaign
I predict if user is going to like a music

Why do we need recommendations?

Help users discover new content

Why do we need recommendations?
Help users find what they have been already looking for.

Prominently place content as a part of the user inerface.

Why do we need recommendations?
Help users find complementary products

Why do we need recommendations?
Help users find substitute products

Why do we need recommendations?

Personalize user experience based on the feedback

Recommend products based on our interests

Why do we need recommendations?
Who to follow?

Why do we need recommendations?

Help us find things we like

Why do we need recommendations?

I Discover new content
I Help us find what we are looking for
I Personalize content based on our feedback/interests
I Help us find things we like
I . . .

All of the above problems are slightly different from each other.

However, at the base of all of them is the need to model
preferences, opinions and behaviour of users.

Popularity

What are people viewing
now

Limitations

I no context (what is my intention now)
I no personalization

Predicting rating using existing models

Build a model using features of a user and an item

Predicting rating using existing models

The Music Genome Project
https://www.pandora.com/about/mgp

... Each song in the Music Genome Project is analyzed using up to 450
distinct musical characteristics by a trained music analyst. These
attributes capture not only the musical identity of a song, but also the
many significant qualities that are relevant to understanding the musical
preferences of listeners. The typical music analyst working on the Music
Genome Project has a four-year degree in music theory, composition or
performance, has passed through a selective screening process and has
completed intensive training in the Music Genome’s rigorous and precise
methodology. ...

https://www.pandora.com/about/mgp

Predicting rating using existing models

Obtaining features may be expensive

Predicting rating using existing models

Build a model using features of a user and an item

I linear model
I decision tree
I boosting model
I . . .

rating = f (user features, item features)

Predicting rating using existing models

We could predict how many stars a user would give.

We could predict whether a user would give a high rating if they
purchase an item.

We could predict whether a user will like an item.

Based on the predicted rating, the system would recommend

I diverse set of items
I new/unseen content
I something that the user likes or searches for

Predicting rating using existing models

We train a model based on user’s past feedback and various features
that characterize users and items.

Recommender system provides a rating and we provide
recommendations based on this.

Similar to the example in marketing where customers are targeted
based on p̂.

Predicting rating using existing models

Approach does not suffer from a cold-start problem

I Rate new movie from features of other movies user liked

Limitations

I sometimes, we do not have access to features
I often does not perform as well as collaborative filtering methods

Learning relationships

Recommender systems can uncover/model relationships between
users and items they are evaluating, using historical ratings.

Geared
towards
females

Geared
towards
males

serious

escapist

The Princess
Diaries

The Lion King

Braveheart

Lethal Weapon

Independence
Day

AmadeusThe Color
Purple

Dumb and
Dumber

Ocean’s 11

Sense and
Sensibility

Gus

Dave

Latent factor models

Collaborative filtering

Data we may have (example from Netflix challenge)

scoredatemovieuser
15/7/02211

58/2/042131

43/6/013452

45/1/051232

37/15/027682

51/22/01763

48/3/00454

19/10/055685

23/5/033425

212/28/002345

58/11/02766

46/15/03566

scoredatemovieuser
?1/6/05621

?9/13/04961

?8/18/0572

?11/22/0532

?6/13/02473

?8/12/01153

?9/1/00414

?8/27/05284

?4/4/05935

?7/16/03745

?2/14/04696

?10/3/03836

Training data Test data

Movie rating data

Collaborative filtering
Data commonly represented as a rating matrix.Neighborhood-based CF

121110987654321

455311

3124452

534321423

245424

5224345

423316

users

item
s

- unknown rating - rating between 1 to 5

Collaborative filtering

I a user viewed/bought an item (1)
I a user did not view/buy an item (0)

• A powerful source of information:
Characterize users by which movies they rated, rather
than how they rated

•  A dense binary representation of the data:

45531

312445

53432142

24542

522434

42331

users

m
ovies

010100100101

111001001100

011101011011

010010010110

110000111100

010010010101

users

m
ovies

Which movies users rate?

  ,ui u i
R r   ,ui u i

B b

Collaborative filtering

I 1 user viewed/bought an item and liked it
I -1 user viewed/bought an item and did not like it
I 0 user did not view/buy an item

Basic idea Part I:
Basic neighborhood methods

Joe

#2

#3

#1

#4

Basic idea

Basic idea

similarity

s13 = 0.2
s16 = 0.3

Predict rating using
weighted average

0.2 · 2 + 0.3 · 3
0.2 + 0.3 = 2.6

Basic idea

(user, user) similarity to recommend items

(item, item) similarity to recommend new items that were also liked
by the same users

The oldest known collaborative filtering method.

See Amazon recommendation system at scale:
http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf

Similarities

How do we measure (user, user) similarity or (item, item) similarity?

I Euclidean distance
I Jaccard similarity
I Cosine similarity
I Pearson correlation

Notation:

rating(user,item) = r(u,i) = rui

Iu = set of items purchased by user u
Ui = set of users who purchased by item i

Euclidean distance

Distance between item i1 and item i2 is

dist2(i1, i2) =
∑

u
(ru,i1 − ru,i2)2

If each rating is 0 or 1 (user bought item or did not), then the
distance becomes

dist2(i1, i2) =#{users that bought i1, but not i2}
+ #{users that bought i2, but not i1}

Euclidean distance

Example:

U1 = {1, 4, 8, 9, 11, 23, 25, 34}
U2 = {1, 4, 6, 8, 9, 11, 23, 25, 34, 35, 38}
U3 = {4}
U4 = {5}

What is the distance between items 1 and 2?

What is the distance between items 3 and 4?

Euclidean distance

What is the distance between items 1 and 2? –> 3

What is the distance between items 3 and 4? –> 2

Problem:

I Favors small sets, even if they have few elements in common.

Jaccard similarity

Measures similarity between sets

Jaccard(Ui ,Uj) = |Ui ∩ Uj |
|Ui ∪ Uj

= bought i and j
bought i or j

Key idea: normalize by popularity

Jaccard similarity

I Maximum of 1 if two items were purchased by the same set of
users or if the two users purchased exactly the same set of
items.

I Minimum of 0 if the two items were purchased by completely
disjoint sets of users or if the two users purchased completely
disjoint sets of items.

Jaccard similarity in action
How does amazon generate their recommendations?
http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf

A user is looking at

Ui is the set of users who viewed this product.

Rank products according to |Ui ∩Uj |
|Ui ∪Uj

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf

Cosine similarity
Jaccard similarity works only on 0/1 data

Cosine similarity works on arbitrary data.

I 1 user viewed/bought an item and liked it
I -1 user viewed/bought an item and did not like it
I 0 user did not view/buy an item

Cosine similarity

similarity(A,B) = cos(θ) = A · B
‖A‖ · ‖B‖

I cos(θ) = 1 (θ = 0) A and B point in the same direction
I cos(θ) = −1 (θ = 180) A and B point in the opposite direction
I cos(θ) = 0 (θ = 90) A and B are orthogonal

Cosine similarity
Each item is represented by a vector of users’ ratings

Uharry potter = (0, 1, 1) Upitch black = (1, 1, 0)

similarity = (0, 1, 1) · (1, 1, 0)√
2 ·
√
2

= 1
2

Pearson correlation

Very similar to cosine similarity

Cosine similarity would fail if naively applied to ratings

Example:

R1 = (1, 1, 1)
R2 = (5, 5, 5) −→ similarity = 1

Pearson correlation will solve this by removing average from the
rating vector

Pearson correlation

Pearson correlation computed over shared support

sij =
∑

u∈Ui ∩Uj (rui − r̄i)(ruj − r̄j)√∑
u∈Ui ∩Uj (rui − r̄i)2 ·

∑
u∈Ui ∩Uj (ruj − r̄j)2

Pearson correlation vs cosine similarity

Pearson correlation

sij =
∑

u∈Ui ∩Uj (rui − r̄i)(ruj − r̄j)√∑
u∈Ui ∩Uj (rui − r̄i)2 ·

∑
u∈Ui ∩Uj (ruj − r̄j)2

Cosine similarity

sij =
∑

u∈Ui ∩Uj rui · ruj√∑
u∈Ui ∩Uj r2

ui ·
∑

u∈Ui ∩Uj r2
uj

How to use similarity to recommend?

Given similarity measure between items sij

Find set sk(i , u) of k-nearest neighbors to movie i that were rated
by user u

Estimate rating using weighted average over the set of neighbors

r̂ui =
∑

j∈sk(i ,u) sij ruj∑
j∈sk(i ,u) sij

Normalization and bias problem

Problems:

I Some items are significantly higher rated
I Some users rate substantially lower
I Ratings change over time

Bias correction is crucial for collaborative filtering approaches

I global bias µ
I offset per user bu
I offset per movie bi
I time effects (ignore for now)

Baseline rating for (user, movie) is b(u, i) = µ+ bu + bi

Normalization and bias problem

Mean rating of all movies µ = 3.7

Troll hunter is 0.7 above mean (bi = 0.7)

User rates 0.2 below mean (bu = −0.2)

For this (user, movie) baseline rating is 4.2 stars

Estimating biases

min
b

∑
(u,i):r(u,i) 6=?

(r(u, i)− µ− bu − bi)2 + λ(
∑

u
b2

u +
∑

i
b2

i)

This is a linear model. Why?

How to recommend with biases?

Similar to the approch earlier

Given similarity measure between items si j

Find set sk(i , u) of k-nearest neighbors to movie i that were rated
by user u

Estimate rating using weighted average over the set of neighbors

r̂ui = bui +
∑

j∈sk(i ,u) sij(ruj − buj)∑
j∈sk(i ,u) sij

Temporal effects

Temporal effects

Temporal effects

Recommendations based on similarities

I intuitive
I there is no training
I easy to explain to a user
I widely used in practice
I surprisingly, collaborative filtering is extremely useful even

though we have not looked at any features
I accurcy and scalability questionable
I cold start problem
I will not necessarily encourage diverse results

Cold start problem

What happens with new users where we have no ratings yet?

I Recommend popular items.
I Have some start-up questions (for example, “tell me 10 movies

you love”).

What do we do with new items?

I Content-based filtering techniques (that is, use features).
I Pay a focus group to rate them.

Modelling approach to recommendations

So far we’ve looked at approaches that try to define some definition
of user/user and item/item similarity.

Recommendation consists of

1. Finding an item i that a user likes (gives a high rating)
2. Recommending items that are similar to it (that is, items j with

a similar rating profile to i)

Hinges on finding a good measure of similarity

Modelling approach to recommendations

What we want to do next is to model the rating.

rui = f (user, item) + noise

Recommendation consists of identifying items with largest rating

recommendation(u) = arg max
i∈unseen items

f (u, i)

Netflix yardstick

Netflix prize

I In 2006, Netflix created a dataset of 100,000,000 movie ratings
I Data looked like: (userID, itemID, time, rating)
I Whoever first manages to reduce the (R)MSE by 10% versus

Netflix’s solution wins $1,000,000
I Data were de-anonymized — lawsuit againt Netflix

Root mean squared error for predicting ratings

RMSE(f) =
√√√√ 1

N
∑
u,i

(f (u, i)− rui)2

Predicted rating r̂ui = f (u, i)

Netflix yardstick

A lot of research on minimizing the mean squared error.

Not clear that improving this metric will lead to better user
experience.

When building a model we focus on minimizing root mean squared
error.

Latent factor model
Suppose we had K features of movies and users

Describe movie i with features qi

I How much is it action, romance, drama, . . .

qi = (0.9, 0.2, 0.5, . . .)

Describe user u with features pu

I How much she likes action, romance, drama, . . .

pu = (0.01, 0, 0.9, . . .)

f (u, i) is the product of the two vectors

f (u, i) = 0.9 · 0.01 + 0.2 · 0 + 0.5 · 0.9 + . . .

Discovering features via matrix factorization

Discovering features via matrix factorization

Geared
towards
females

Geared
towards
males

serious

escapist

The Princess
Diaries

The Lion King

Braveheart

Lethal Weapon

Independence
Day

AmadeusThe Color
Purple

Dumb and
Dumber

Ocean’s 11

Sense and
Sensibility

Gus

Dave

Latent factor models

Discovering features via matrix factorization

Discovering features via matrix factorization

Discovering features via matrix factorization

Finding parameters of the latent factor model

Model f (u, i) = pu · qi

We will find p and q by minimizing the following objective

min
p,q

∑
(u,i):rui 6=?

(rui − pu · qi)2 + λ(
∑
u,k

p2
u,k +

∑
i ,k

q2
i ,k)

Stochastic gradient descent

Visualizing the first two factors

Visualizing the first two factors

First factor:

I left: lowbrow comedies and horror movies, aimed at a male or
adolescent audience

I right: drama or comedy with serious undertones and strong
female leads

Second factor:

I top: independent, critically acclaimed, quirky films
I bottom: mainstream formulaic films

Improvements

I adding bias terms
I adding features and implicit feedback
I modelling temporal effects

Adding biases

40

60
90

128
18050

100
200

50

100
200

50

100 200 500

100
200 500

50
100 200 500 1000 1500

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

10 100 1000 10000 100000

RM
SE

Millions of Parameters

Factor models: Error vs. #parameters

NMF

BiasSVD

SVD++

SVD v.2

SVD v.3

SVD v.4

Add
biases

f (u, i) = µ+ bu + bi + pu · qi

Combining real and discovered features

Real features capture context

I Time of the day, what I just saw, user info, what I bought in
the past

Discovered features from matrix factorization capture groups of
users who behave similarly

I Users who like action movies and comedies

Mitigates cold-start problem

I Ratings for a new user from real features only
I As more information about user is discovered, matrix

factorization “features” become more relevant

Implicit informationRatings are not given at random!

B. Marlin et al., “Collaborative Filtering and the Missing
at Random Assumption” UAI 2007

Yahoo! survey answersYahoo! music ratingsNetflix ratings

Distribution of ratings

Our decision about whether to purchase a movie is a function of
how we expect to rate it.

For items we have purchased, our decision to enter a rating or write
a review is a function of our rating.
http:
//www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf

http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf
http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf

40

60
90

128
18050

100
200

50

100
200

50

100 200 500

100
200 500

50
100 200 500 1000 1500

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

10 100 1000 10000 100000

RM
SE

Millions of Parameters

Factor models: Error vs. #parameters

NMF

BiasSVD

SVD++

SVD v.2

SVD v.3

SVD v.4

“who rated
what”

Modeling temporal change

Time-dependent bias

Time-dependent user preferences

Parameterize functions b and p

f (u, i , t) = µ+ bu(t) + bi (t) + qi · pu(t)

Good parametrization is the key.

http://www.cc.gatech.edu/~zha/CSE8801/CF/kdd-fp074-koren.pdf

http://www.cc.gatech.edu/~zha/CSE8801/CF/kdd-fp074-koren.pdf

40

60
90

128
18050

100
200

50

100
200

50

100 200 500

100
200 500

50
100 200 500 1000 1500

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

10 100 1000 10000 100000

RM
SE

Millions of Parameters

Factor models: Error vs. #parameters

NMF

BiasSVD

SVD++

SVD v.2

SVD v.3

SVD v.4
temporal
effects

Moral of the story

Increasing the number of parameters does not help much, but
increasing the model complexity does.

$1,000,000 seems to be incredibly cheap to get the amount of
research that was devoted to the task.

The winning solution never made it into production at Netflix.

It is not clear that a solution which changes RMSE slightly will
result in hugely improved user experience.

