
A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Ego-net  Patterns  

17

Oddball:  Spotting  anomalies   in  weighted  graphs
Leman  Akoglu,  Mary  McGlohon,  Christos  Faloutsos
PAKDD 2010



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

§ Ni:  number  of  neighbors  (degree)  of  ego  i
§ Ei:  number  of  edges  in  egonet i

§ Wi:  total  weight  of  egonet i
§ λw,i:  principal  eigenvalue  of  the  weighted
adjacency  matrix  of  egonet i

18

Oddball:  Spotting  anomalies   in  weighted  graphs
Leman  Akoglu,  Mary  McGlohon,  Christos  Faloutsos
PAKDD 2010

Ego-net  Patterns  



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015 19

Oddball:  Spotting  anomalies   in  weighted  graphs
Leman  Akoglu,  Mary  McGlohon,  Christos  Faloutsos
PAKDD 2010

Pattern:  Ego-net  Power  Law  Density

Ei∝ Ni
α

1  ≤  α  ≤  2
slope=2

slope=1

slope=1.35



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

slope=1

slope=1.08

#edges  E

to
ta
l  w
ei
gh
t  W

20

Oddball:  Spotting  anomalies   in  weighted  graphs
Leman  Akoglu,  Mary  McGlohon,  Christos  Faloutsos
PAKDD 2010

Pattern:  Ego-net  Power  Law  Weight    
Wi∝ Ei

α

1  ≤  α  



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015 21

Oddball:  Spotting  anomalies   in  weighted  graphs
Leman  Akoglu,  Mary  McGlohon,  Christos  Faloutsos
PAKDD 2010

Pattern:  Ego-net  Power  Law  Eigenvalue

slope=1

slope=0.5

slope=0.64

total  weight  W

la
rg
es
t  e
ig
en
va
lu
e  
  

λ 1
,w

λi∝Wi
α

0.5 ≤  α  ≤  1



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Using  graph  patterns  to  find  roles
22

It’s  who  you  know:  Graph  mining  using  recursive  structural  features
K.  Henderson,  B.  Gallagher,  L.  Li,  L.  Akoglu,  
T.  Eliassi-Rad,  H.  Tong,  C.  Faloutsos
KDD 2011

E

Useful node  features:
• Degree
• Nodes  in  ego-net
• Edges  in  ego-net
• Edges  leaving  ego-net
• Mean  of  neighbor   degree
• Sum  of  neighbor  degree
• Expand  recursively…



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Using  graph  patterns  to  find  roles
23

It’s  who  you  know:  Graph  mining  using  recursive  structural  features
Keith  Henderson,  Brian  Gallagher,  Lei  Li,  Leman  Akoglu,  
Tina  Eliassi-Rad,  Hanghang Tong,  Christos  Faloutsos
KDD 2011

D

P

W

W

W

W

Learn  classifier  
to  predict  
node  labels



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Using  graph  patterns  to  find  roles
24

It’s  who  you  know:  Graph  mining  using  recursive  structural  features
Keith  Henderson,  Brian  Gallagher,  Lei  Li,  Leman  Akoglu,  
Tina  Eliassi-Rad,  Hanghang Tong,  Christos  Faloutsos
KDD 2011

(a) Intuition (neighbors matter)

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

A
1-

A
2 

A
1-

A
3 

A
2-

A
3 

A
1-

A
4 

A
2-

A
4 

A
3-

A
4 

A
1-

B
 

A
2-

B
 

A
3-

B
 

A
4-

B
 

A
-B

 

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

TrainSet-TestSet 

Regional "Neighborhood" Default 

(b) Performance preview (blue bars: highest - win)

Figure 1: (a) Intuition behind ReFeX: Six IP hosts from differ-
ent days of an enterprise network trace and (manually) labeled
by their primary traffic type. Node and edge size indicate com-
munication volume relative to the central node in each frame.
Regional structure, i.e. the types of neighbors that a given host
connects to, are vital. (b) classification accuracy of ReFeX with
respect to transfer learning, in blue bars (higher is better) - see
Figure (4) for more details.

The contributions of our work are as follows:

• Novel Design: We propose ReFeX, a scalable algorithm that
computes regional features capturing “behavioral” informa-
tion on large graphs.

• Effectiveness: ReFeX’s regional features perform well for
several graph mining tasks, like transfer learning (across-
network classification) and node de-anonymization on large
graphs.

The rest of the paper is organized as follows: the proposed strate-
gies are presented in Section 2; the experiments are presented in
Sections 3 and 4. In Section 5, we review the related work; and we
conclude the paper in Section 6.

2. PROPOSED ALGORITHM
Our algorithm ReFeX aggregates existing feature values of a node

and uses them to generate new recursive features. The initial set of

features used to seed the recursive feature generation can be struc-
tural information from the network or attributes from an external
source. Here, we focus on tasks where only structural information
is available. We separate structural attributes into three types: local,
egonet, and recursive features. Local and egonet features together
are called neighborhood features, and all three together are called
regional features.

2.1 Neighborhood Features
The base features that seed the recursive ReFeX process are lo-

cal and egonet features. These can be computed quickly for a given
node. We call the set of local and egonet features together neigh-
borhood features.

Local features are all essentially measures of the node degree.
If the graph is directed, they include in- and out-degree as well as
total degree. For weighted graphs, they contain weighted versions
of each local feature.

Egonet features are computed for each node based on the node’s
ego network (a.k.a. egonet). The egonet includes the node, its
neighbors, and any edges in the induced subgraph on these nodes.
Egonet features include the number of within-egonet edges, as well
as the number of edges entering and leaving the egonet. Strictly
speaking, the latter are not in the egonet but they can be counted
without looking at non-egonet nodes. As with local features, we
compute directed and/or weighted versions of these features if the
edges are directed and/or weighted.

2.2 Recursive Features
We broadly define a recursive feature as any aggregate computed

over a feature value among a node’s neighbors.

2.2.1 Generating Recursive Features
Currently ReFeX collects two types of recursive features: means

and sums.1 As a typical example, one recursive feature is defined as
the mean value of the feature unweighted degree among all neigh-
bors of a node. The features that can be aggregated are not re-
stricted to neighborbood features, or even to structural features.
The aggregates can be computed over any real-valued feature (in-
cluding other recursive features). We compute the means and sums
of all feature values. Moreover, when applicable, we compute these
for incoming and outgoing edges separately.

2.2.2 Pruning Recursive Features
Clearly, the number of possible recursive features is infinite and

grows exponentially with each recursive iteration. To reduce the
number of generated features, a variety of pruning techniques can
be employed. A simple example is to look for pairs of features
that are highly correlated. In this example case, the pruning strat-
egy is to eliminate one of the features whenever two features are
correlated above a user-defined threshold.

For computational reasons, ReFeX uses a simplified version of
this approach. Specifically, feature values are mapped to small in-
tegers via vertical logarithmic binning, then ReFeX looks for pairs
of features whose values never disagree by more than a threshold.
For details on the threshold, see Section 2.3 below.

First, each feature’s values are transformed into vertical loga-
rithmic bins of size p (where 0 < p < 1). The process is as

1We selected sum and mean as aggregate functions heuristically.
These simple measures capture the dominant trends among a node’s
neighbors w.r.t. each feature. Other functions, such as maximum,
minimum, and variance could easily be added to ReFeX. In our ex-
periments, sum and mean were sufficient to provide good empirical
performance on data mining tasks with a reasonable runtime.



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

Using  graph  patterns  to  find  roles
25

It’s  who  you  know:  Graph  mining  using  recursive  structural  features
Keith  Henderson,  Brian  Gallagher,  Lei  Li,  Leman  Akoglu,  
Tina  Eliassi-Rad,  Hanghang Tong,  Christos  Faloutsos
KDD 2011

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

A
1-

A
2 

A
1-

A
3 

A
2-

A
3 

A
1-

A
4 

A
2-

A
4 

A
3-

A
4 

A
1-

B
 

A
2-

B
 

A
3-

B
 

A
4-

B
 

A
-B

 

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

TrainSet-TestSet 

Regional "Neighborhood" Default 

Figure 4: Across-network transfer learning with neighborhood
and regional features. Regional demonstrates consistently high
accuracy on difficult transfer learning tasks.

3.4.2 Results
Figure 4 demonstrates the performance of Neighborhood and Re-

gional on a series of across-network transfer learning tasks. Here,
we train on one network, where all known labels are available, and
test on a separate network that is completely unlabeled. We em-
phasize the difficulty of these tasks given the (sometime extreme)
differences in class distributions between data sets (see Table 1).
The performance of the Default classifier is a good indicator of the
difficulty of each task since this model makes predictions based
solely on the most frequent class from the training set. We also
note that wnRN+RL is not applicable for these tasks since it relies
on the availability of some known class labels to seed the inference
process.

As in the within-network setting, the Regional classifier is the
best overall performer on the across-network tasks, achieving 82%
- 91% accuracy training and testing on separate days of IP-A and
77% accuracy training on all days of IP-A and testing on IP-B. The
performance of Regional applied to IP-A4 is particularly impres-
sive, given the extreme differences in class distribution between
IP-A4 and the other data sets (see Table 1). We note that Regional
is somewhat less successful training on IP-A4. In fact, training on
IP-A4 and testing on IP-B is the one case where Regional under-
performs Neighborhood. However, the difference in performance
is small (<5%). Finally, and not surprisingly, we see a benefit to
training on a number of diverse data sets instead of a single data
set. Specifically, we achieve 77% training on all of the IP-A data
sets and testing on IP-B, whereas we see a lot of variation (55% -
85%) training on individual days from IP-A.

4. FEATURE EFFECTIVENESS ON
IDENTITY RESOLUTION

To demonstrate that regional features capture meaningful and in-
formative behaviors of nodes, we present a collection of identity
resolution tasks. In each task, we compute a set of regional fea-
tures on a pair of networks whose node-sets overlap. Our hypoth-
esis is that a node’s feature values will be similar across graphs.
We present an experimental framework that allows us to test this
empirically. In our experiments, we will demonstrate how this

method can be used to perform “de-anonymization”on social net-
work datasets when external non-anonymized data is available.

4.1 Problem Statement
For a pair of graphs whose node-sets overlap, but whose edge-

sets can be distinct (or even represent a totally different type of
observation), can we use network structure alone to map nodes in
one network to nodes in the other? More realistically, can we re-
duce the entropy associated with each node in one graph, with re-
spect to its possible identity among nodes in the second graph? For
a given method, we will measure success at this task by counting
how many “incorrect” nodes the method guesses before it finds the
correct node in the second graph.

4.2 Methodology
We are given two graphs, G

target

and G
reference

, and a vertex
v

test

which exists in both graphs. To test a given identity resolution
strategy, we allow the strategy to guess reference vertices hvguess

1 ,
vguess

2 , . . . , vguess

k

i until it correctly guesses v
test

. The score as-
sociated with this strategy is k, the number of guesses required to
find the node. The baseline method is to guess at random; for this
strategy we assume the expected score |V

reference

|/2.
The strategies we test experimentally use structural features to

compute guesses. We present results for (1) Local features only,
(2) Neighborhood features only, and (3) Regional features. The fea-
tures are computed using ReFeX on G

target

. The same features are
then computed on G

reference

. For a given strategy, the guesses are
generated in order of increasing Euclidian distance from V

target

in
feature space. Our hypothesis is that Regional will score lower (i.e.
better) than Local or Neighborhood.

To compare the overall performances of strategies, we compute
scores across a set S

overlap

of all vertices that exist in both graphs.
When it is not computationally feasible to analyze every node in
S

overlap

, we select a set of vertices S
test

⇢ S
overlap

and report
all scores for nodes in S

test

. In these experiments, we select S
test

by taking the 1000 vertices in V
target

with the highest degree, and
keeping only those vertices that are also in S

overlap

.
There are a number of ways to compare performance on a given

test set. For example, the mean score across all target instances
is a measure of success, with lower mean scores indicating better
performance. We can also compute the fraction of target instances
that score less than a given threshold; here a larger fraction is better.
For example, we can report the fraction of target vertices whose
score is less than 1% of |V

reference

|.3

4.3 Data
Table 3 outlines the data sets used in this set of experiments.

The first is a pair of Twitter networks from 2008, including a who-
follows-whom network and a who-mentions-whom network. The
second is an SMS communication network. The third is a collection
of 28 days of Yahoo IM events. The fourth is IP traffic on two
separate enterprise networks, observed at several different times.
We described the IP network in details in Section 3.1.

Yahoo! IM Networks. Each graph here is a collection of IM
events taken from one of 28 days of observation.4 Each node is
an IM user, and each link is a communication event on a given

3If we combine the latter across all thresholds, we can treat it as
the cumulative distribution function of p(score(x)), the empirical
probability distribution over scores for this strategy. This presenta-
tion is harder to interpret, however, since one strategy may perform
better in some regions and worse in others, and we are generally
concerned with the lowest possible scores.
4http://sandbox.yahoo.com/



A.  Beutel,  L.  Akoglu,  C.  FaloutsosKDD  2015

(a) (b)

Figure 7: IP tra�c classes are well-separated in

the RolX “role space” with as few as 3 roles. (a)

Ternary plot showing the degree of membership of

each DNS, P2P, and Web host in each of three roles.

(b) Pseudo-density plot obtained by adding uniform

noise to (a) to reveal overlapping points.

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Ac
cu

ra
cy

 

Time 

DEVICE 
RolX Baseline 

(a) Business Student vs. Rest

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Ac
cu

ra
cy

 

Time 

DEVICE 
RolX Baseline 

(b) Graduate Student vs. Rest

Figure 8: RolX (in blue) e↵ectively generalizes be-

havior across time (higher is better). Figure shows

results of across-network transfer learning on the

Reality Mining Device dataset with RolX . Notice

that RolX almost always performs well on the two

di↵erent learning tasks with an average accuracy of

83% and 76%, respectively.

coupled groups. Examples are Andrei Broder and Chris-
tos Faloutsos.

• red diamond : bridge nodes, that connect groups of
(typically, ’main-stream’) nodes. Examples of bridges
are Albert-Laszlo Barabasi and Mark Newman.

(a) Role-colored Visualization of the Network

(b) Role A�nity Heat Map

Figure 9: RolX e↵ectively discovers roles in the

Network Science Co-authorship Graph. (a) Author

network RolX discovered four roles, like the het-

erophilous bridges (red diamond), as well as the ho-

mophilous “pathy” nodes (green triangle) (b) A�n-

ity matrix (red is high score, blue is low) - strong

homophily for roles #1 and #4.

• gray rectangle: main-stream, the vast majority of nodes
- neither on a clique, nor a chain. Examples are John
Hopcroft and Jon Kleinberg.

• green triangle: pathy, nodes that belong to elongated
clusters. For example, Lada Adamic and Bernardo
Huberman.

RolX ’s roles allow us to find similar nodes by compar-
ing their role distributions. Figure 10 depicts node sim-
ilarity for three (target) authors for the Network Science
Co-authorship Graph: Mark Newman, F. Robert, and J.
Rinzel. The primary roles for these three authors are dif-
ferent. Mark Newman’s primary role is a broker (a prolific
author); F. Robert’s primary role places him in a tight-knit
group (an author with homophilous neighborhood), and J.
Rinzel’s primary role places him in the periphery (an au-
thor with homophilous but “pathy” neighborhood). In each
node-similarity picture, the target author is colored in yel-

Using  graph  patterns  to  find  roles
26

RolX:  Structural  Role  Extraction  &  Mining  in  Large  Graphs
K.  Henderson,  B.  Gallagher,  T.  Eliassi-Rad,  
H.  Tong,  Sugato Basu,  L.Akoglu,  
D.  Koutra,  C.  Faloutsos,  L.  Li
KDD 2012

Use  graph  features  to  find  
similar  types  of  behavior:
• Christos  Faloutsos  &  
Andrei  Broder: tightly  
knit  communities

• Albert-Laszlo  Barabasi &  
Mark  Newman:  bridge  
communities

• John  Hopcroft and  Jon  
Kleinberg:  mainstream

• Lada Adamic and  
Bernardo  Huberman:
elongated  clusters


