Probabilistic Graphical Models

Carlos Carvalho, Mladen Kolar and Robert McCulloch

11/19/2015

KE K K Ø K K E K K E K V R K K K K K K K K

Classification revisited

The goal of classification is to learn a mapping from features to the target class.

- ► Classifier: $f : X \mapsto Y$
- \triangleright X are features (Booth Student, Taken ML Class, ...)
- \triangleright Y is the target class (Big Salary: yes, no)

Suppose that you know $P(Y | X)$ exactly, how should you classify?

KORKAR KERKER SAGA

- $X = ($ Booth Student = 1*,Taken ML* Class = 1*, . . .*)
- How do we predict $\hat{y} = \text{Big_Salary} \in \{\text{yes}, \text{no}\}\$?

Bayes optimal classifier

$$
\hat{y} = \arg\max_{y} P(Y = y \mid X = x)
$$

In practice, we do not know $P(Y = y | X = x)$. We model it directly.

Logistic regression:
$$
P(Y | X) = \frac{\exp(x^T b)}{1 + \exp(x^T b)}
$$

Similarly, we can use tree based models or neural networks or . . .

When we model $P(Y | X)$ directly, we have a discriminative model.

KO K K Ø K K E K K E K V K K K K K K K K K

Bayes Rule

$$
P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}
$$

Which is a shorthand for:

$$
\forall (i, j) \quad P(Y = y_i \mid X = x_j) = \frac{P(X = x_j \mid Y = y_i) P(Y = y_i)}{P(X = x_j)}
$$

Common terminology:

$$
\blacktriangleright \ \ P(Y) \text{ - prior}
$$

- \blacktriangleright $P(X | Y)$ likelihood
- \blacktriangleright $P(X)$ normalization

Learning Bayes optimal classifier

How do we represent the data? How many parameters do we need? Prior, $P(Y)$:

Example suppose that Y is composed of k classes

Likelihood, $P(X | Y)$

Example suppose there are p binary features

Learning Bayes optimal classifier

How do we represent the data? How many parameters do we need? Prior, $P(Y)$:

- **Example suppose that Y is composed of k classes**
- \triangleright we need $k 1$ parameters: $P(Y = y)$ for $y = 1, ..., k 1$

Likelihood, $P(X | Y)$

- **Example suppose there are p binary features**
- ▶ for each class $(Y = y)$, we need to have a distribution over features $P(X = x | Y = y)$
- ► total number of parameters $k \cdot (2^p 1)$
- \triangleright this is huge number of parameters, and we would need a lot of data (and time and storage)

Complex model! High variance with limited [da](#page-4-0)t[a!](#page-6-0)[!!](#page-4-0) (B) A REALE A ROOM

Independence of two random variables: $X \perp Y$

$$
P(X, Y) = P(X) \cdot P(Y)
$$

$$
P(Y | X) = P(Y)
$$

 Y and X do not contain information about each other. Observing Y does not help predicting X . Observing X does not help predicting Y .

Examples:

 \blacktriangleright Independent: Winning on roulette this week and next week.

 \blacktriangleright Dependent: Russian roulette

X is **conditionally independent** of Y given Z, if for all values of (i, j, k) that random variables X, Y, and Z can take, we have

 $P(X = i, Y = j | Z = k) = P(X = i | Z = k) \cdot P(Y = j | Z = k)$

Knowing Z makes X and Y independent. We write $X \perp Y \mid Z$.

Examples:

Shoe size and reading skills are dependent. Given *age*, shoe size and reading skills are independent.

Storks deliver babies. Highly statistically significant correlation exists between stork populations and human birth rates across Europe.

London taxi drivers:

A survey has pointed out a positive and significant correlation between the number of accidents and wearing coats. They concluded that coats could hinder movements of drivers and be the cause of accidents. A new law was prepared to prohibit drivers from wearing coats when driving.

Finally another study pointed out that people wear coats when it rains. . .

 $P(\text{accidents}, \text{cost} \mid \text{rain}) = P(\text{accidents} \mid \text{rain}) \cdot P(\text{cost} \mid \text{rain})$

KID KA KERKER KID KO

An equivalent definition

X is **conditionally independent** of Y given Z, if for all values of (i, j, k) that random variables X, Y , and Z can take, we have

$$
P(X = i | Y = j, Z = k) = P(X = i | Z = k)
$$

Example:

 $P(\text{thunder } | \text{ rain}, \text{ lightning}) = P(\text{thunder } | \text{ lightning})$

Thunder and rain are not independent. However, if I tell you that there is lightning, they become independent.

KORKAR KERKER SAGA

How can we use conditional independence in classification?

Goal: Predict Thunder

Features are conditionally independent

 \blacktriangleright lightning

 \blacktriangleright rain

Recall: $P(T | L, R) \propto P(L, R | T) \cdot P(T)$

How many parameters do we need to estimate?

How can we use conditional independence in classification?

How many parameters do we need to estimate?

Without conditional independence, we need 6 parameters to represent $P(L, R | T)$.

```
However, we have L \perp R \mid T, so
```

```
P(L,R | T) = P(L | T) \cdot P(R | T)
```
KELK KØLK VELKEN EL 1990

and we need only 4 parameters.

The Naïve Bayes assumption

Features are independent given class:

$$
P(X_1, X_2 | Y) = P(X_1 | Y) \cdot P(X_2 | Y)
$$

More generally, if we have p features:

$$
P(X_1,\ldots,X_p | Y) = \prod_{i=1}^p P(X_i | Y)
$$

The likelihood is product of individual features likelihoods.

How many parameters do we need now?

The Naïve Bayes assumption

How many parameters for $P(X_1, \ldots, X_p | Y)$?

► Without assumption we need $k \cdot (2^p - 1)$ parameters

With the Naïve Bayes assumption

$$
P(X_1,\ldots,X_p\mid Y)=\prod_{i=1}^p P(X_i\mid Y)
$$

we need $p \cdot k$ parameters.

Nice reduction! May be to aggressive.

The Naïve Bayes classifier

Given:

 \blacktriangleright Prior $P(Y)$

- \triangleright p conditionally independent features X given the class Y
- \blacktriangleright For each X_i , we have likelihood $P(X_i\mid Y)$

Decision rule:

$$
\hat{y} = \arg \max_{y} P(Y | X)
$$
\n
$$
= \arg \max_{y} \frac{P(X | Y) \cdot P(Y)}{P(X)}
$$
\n
$$
= \arg \max_{y} P(X | Y) \cdot P(Y)
$$
\n
$$
= \arg \max_{y} P(Y) \cdot \prod_{i=1}^{p} P(X_i | Y)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The Naïve Bayes classifier

Given:

- \blacktriangleright Prior $P(Y)$
- \triangleright p conditionally independent features X given the class Y
- \blacktriangleright For each X_i , we have likelihood $P(X_i \mid Y)$

Decision rule:

$$
\hat{y} = \arg\max_{y} P(Y) \cdot \prod_{i=1}^{p} P(X_i \mid Y)
$$

If the Naïve Bayes assumption holds, NB is optimal classifier!

How do we estimate the parameters of NB?

We count! For a given dataset

Count $(A = a, B = b) \equiv$ number of examples where $A = a$ and $B = b$

Prior

$$
P(Y = y) = \frac{\text{Count}(Y = y)}{n}
$$

Likelihood

$$
P(X_i = x_i | Y = y) = \frac{\text{Count}(X_i = x_i, Y = y)}{\text{Count}(Y = y)}
$$

Subtleties of NB

Usually (always), features are not conditionally independent.

$$
P(X_1,\ldots,X_p\mid Y)\neq \prod_{i=1}^p P(X_i\mid Y)
$$

Actual probabilities $P(Y | X)$ often biased towards 0 or 1.

Nonetheless, NB is the single most used classifier out there. NB often performs well, even when the assumption is violated.

KID KA KERKER E VOOR

Subtleties of NB

What if you never see a training instance where $X_1 = a$ when $Y = b$?

For example, $Y = \{SpamEmail\}, X_1 = \{Tenlargement'\}$ $P(X_1 = a | Y = b) = 0$

What does that imply for classification of test examples?

 \blacktriangleright For a test example X, what is

$$
P(Y = b \mid X_1 = a, X_2, \ldots, X_p)?
$$

Does the probability above depend on the values X_2, \ldots, X_p ?

Solution: smoothing

 \blacktriangleright Add "fake" counts

$$
\operatorname{SmoothCount}(X_i = x_i, Y = y) = \operatorname{Count}(X_i = x_i, Y = y) + 1
$$

Text classification

- riacle classify e-mails (spam, ham)
- \triangleright classify news articles (what is the topic of the article)
- \triangleright classify reviews (positive or negative review)

Features X are entire documents (reviews):

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun. . . It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet.

NB for text classification

 $P(X | Y)$ is huge.

- \triangleright Documents contain many words
- \triangleright There are many possible words in the vocabulary

The Naïve assumption helps a lot

 \blacktriangleright $P(X_i = x_i | Y = y)$ is simply the probability of observing word x_i in a document on topic y

$$
\blacktriangleright \ \textit{P("hockey"} \mid \textit{Y} = \textit{sports})
$$

$$
\hat{y} = \arg \max_{y} P(y) \cdot \prod_{i=1}^{\text{LengthDoc}} P(x_i \mid y)
$$

Bag of words representation

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun. . . It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet.

x **love** xxxxxxxxxxxxxxxx **sweet** xxxxxxx **satirical** xxxxxxxxxx xxxxxxxxxxx **great** xxxxxxx xxxxxxxxxxxxxxxxxxx **fun** xxxx xxxxxxxxxxxxx **whimsical** xxxx **romantic** xxxx **laughing** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxx **recommend** xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx **several** xxxxxxxxxxxxxxxxx xxxxx **happy** xxxxxxxxx **again** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx

Bag of words representation

Position in a document does not matter

$$
P(X_i = x_i \mid Y = y) = P(X_k = x_i \mid Y)
$$

- \triangleright "Bag of words" representation ignores the order of words in a document
- \triangleright Sounds really silly, but often works very well!
- The following two documents are the same

When the lecture is over, remember to wake up the person sitting next to you in the lecture room.

in is lecture lecture next over person remember room sitting the the the to to up wake when you

Sentiment analysis

Twitter sentiment versus Gallup Poll of Consumer Confidence

Brendan O'Connor, Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A. Smith. 2010. From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. In ICWSMP2010

> $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$ 2990

Sentiment analysis

Twitter mood predicts the stock market. Johan Bollen, Huina Mao, Xiao-Jun Zeng

 299

È

Þ

 ϵ \mathbf{b}

Sentiment analysis: CALM predicts DJIA 3 days later

 299 **K ロ ⊁ K 何 ⊁ K ミ ⊁**

R detour: See NB_reviews.R

Application of NB to Large Movie Review Dataset. <http://ai.stanford.edu/~amaas/data/sentiment/index.html>

Bayesian networks

One of the most exciting advancements in statistical AI in the last 10-15 years

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Generalizes naïve Bayes and logistic regression classifiers

Compact representation for exponentially-large probability distributions

Exploit conditional independencies

Handwritten character recognition

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Handwritten character recognition

イロト イ団 トイ ミト イモト 299 Ε

Applications

- \blacktriangleright Speech recognition
- \blacktriangleright Diagnosis of diseases
- \triangleright Study Human genome
- \blacktriangleright Modeling fMRI data
- \blacktriangleright Fault diagnosis
- \blacktriangleright Modeling sensor network data
- \triangleright Modeling protein-protein interactions

KORK ERKER ADAM ADA

- \blacktriangleright Weather prediction
- \blacktriangleright Computer vision
- \blacktriangleright many, many more ...

Causal structure

Suppose we know the following:

- \blacktriangleright The flu causes sinus inflammation
- \blacktriangleright Allergies cause sinus inflammation
- \triangleright Sinus inflammation causes a runny nose

 \triangleright Sinus inflammation causes headaches

How are these connected?

Causal structure

- \blacktriangleright The flu causes sinus inflammation
- \blacktriangleright Allergies cause sinus inflammation
- \triangleright Sinus inflammation causes a runny nose
- \triangleright Sinus inflammation causes headaches

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

What can we do with this?

- Inference $P(F = 1 | N = 1)$
- \blacktriangleright Most probable explanation $\max_{f, a, s, h} P(F = f, A = a, S = s, H = h | N = 1)$
- \triangleright Active data collection: What variable should I observe next?

Probabilistic graphical models

Key ideas:

- \triangleright Conditional independence assumptions are useful
- \blacktriangleright Naïve Bayes is extreme
- \triangleright Graphical models express sets of conditional independence assumptions via graph structure
- ▶ Graph structure + Conditional Probability Tables (CPTs) define joint probability distributions over sets of variables/nodes

KORK EXTERNE PROVIDE

Two types of graphical models:

- \triangleright directed graphs (known as Bayesian Networks)
- \triangleright undirected graphs (known as Markov Random Fields)

Topics in Graphical Models

Representation

 \triangleright Which joint probability distributions does a graphical models represent?

Inference

- \blacktriangleright How to answer questions about the joint probability distribution?
	- \triangleright Marginal distribution of a node variable
	- \triangleright Most likely assignment of node variables

Learning

 \triangleright How to learn the parameters and structure of a graphical model?

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Representation

Which joint probability distributions does a graphical model represent?

Chain rule

 \blacktriangleright For any arbitrary distribution $P(X, Y, Z) = P(X) \cdot P(Y | X) \cdot P(Z | X, Y)$

Fully connected directed graph

Representation

Absence of edges in a graphical model conveys useful information.

 $P(F, A, S, H, N) = P(F) \cdot P(A) \cdot P(S \mid F, A) \cdot P(H \mid S) \cdot P(N \mid S)$

KELK KØLK VELKEN EL 1990

How many terms does the left hand side have? How many parameters?

What about probabilities?

How do we specify the joint probability distribution? We use conditional probability tables

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Number of parameters?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

- \blacktriangleright more bias
- \blacktriangleright less flexible
- \blacktriangleright need less data to learn
- \triangleright more accurate on smaller datasets

Representation

Which joint probability distributions does a graphical model represent?

Bayesian Network is a directed acyclic graph (DAG) that, together with CPTs, provides a compact representation for a joint distribution $P(X_1, \ldots, X_n)$.

Conditional probability tables specify $P(X_i \mid \text{parents}(i)).$

$$
P(X_1,\ldots,X_p)=\prod_{i=1}^p P(X_i \mid \text{parents}(i))
$$

Local Markov Assumption: A variable X is independent of its non-descendants given its parents (only the parents).

KID KA KERKER KID KO

Example

K ロ ト K 御 ト K 君 ト K 君 ト 三君 …

 299

What is $P(X_1, \ldots, X_7)$?

$P(X_1, \ldots, X_7) = P(X_1)P(X_2)P(X_3)P(X_4 | X_1, X_2, X_3)$ · $P(X_5 | X_1, X_3)P(X_6 | X_4)P(X_7 | X_4, X_5)$

Key ingredient: Markov independence assumptions

Local Markov Assumption: If you have no sinus infection, then flu has no influence on headache (flu causes headache but only through sinus).

If you tell $H = 1$, that changes probability of Flu.

However, if you first tell me that $S=1$, then H does not affect probability of Flu.

Markov independence assumptions

Local Markov Assumption: A variable X is independent of its non-descendants given its parents (only the parents).

Joint distribution revisited

Local Markov Assumption: A variable X is independent of its non-descendants given its parents (only the parents).

Two special cases

Fully disconnected graph

Fully connected graph

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 299

What independent assumptions are made?

Naïve Bayes revisited

Local Markov Assumption: A variable X is independent of its non-descendants given its parents (only the parents).

KORK EXTERNE PROVIDE

What independent assumptions are made?

Exaplaining away

 $F \perp A$ $P(F | A = 1) = P(F)$ How about $F \perp A \mid S$? Is it the case that $P(F | A = 1, S = 1) = P(F | S = 1)$? No! $P(F = 1 | S = 1)$ is high, but $P(F = 1 | A = 1, S = 1)$ not as high, since $A = 1$ explains away $S = 1$. In fact, $P(F = 1 \mid A = 1, S = 1) < P(F = 1 \mid S = 1)$.

Independencies encoded in BN

The only assumption we make is the local Markov assumption.

But many other independencies can be derived.

Three important configurations

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 2990

B

Bayesian Networks: Recap

A compact representation for large probability distributions Semantics of a BN

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \triangleright conditional independence assumptions

Representation

- \blacktriangleright Variables
- \blacktriangleright Graph
- \triangleright CPTs

Why are BNs useful?

Probabilistic inference

Query: $P(X \mid e)$

 \triangleright We want answer for every assignment of X given evidence e.

Definition of conditional probability

$$
P(X \mid e) = \frac{P(X, e)}{P(e)} \propto P(X, e)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Marginalization

How do we compute $P(F, N = t)$?

KO K K Ø K K E K K E K V K K K K K K K K K

How to do it quickly?

Learning

KOKK@KKEKKEK E 1990