Hidden Markov Models

Carlos Carvalho, Mladen Kolar and Robert McCulloch

12/03/2015

Handwritten character recognition

Structured prediction

Sequential data

- time-series data (speach)
- characters in a sentence
- base pairs along a DNA strand

Markov Model

Joint distribution of n arbitrary random variables

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{n}\right) & =P\left(X_{1}\right) \cdot P\left(X_{2} \mid X_{1}\right) \cdot \ldots \cdot P\left(X_{n} \mid X_{n-1}\right) \\
& =P\left(X_{1}\right) \cdot \prod_{i=2}^{n} P\left(X_{i} \mid X_{i-1}\right)
\end{aligned}
$$

Example

Random walk model

Example

Understanding the HMM Semantics

$P\left(O_{1} \mid X_{1}=x_{1}\right)$ probability of an image given the letter is x_{1} $P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right)$ probability that letter x_{2} will follow letter x_{1} Decision about X_{2} is influenced by all letters.

HMMs semantics: Details

Need just 3 distributions:
$P\left(X_{1}\right)$ starting state distribution
$P\left(X_{i} \mid X_{i-1}\right)=P\left(X_{j} \mid X_{j-1}\right) \quad \forall j$, transition model
$P\left(O_{i} \mid X_{i}\right)=P\left(O_{j} \mid X_{j}\right) \quad \forall j$, observation model

Parameter sharing:

- more bias, need less data to train
- can deal with words of different length

HMMs semantics: Joint distribution

$$
P\left(X_{1}, \ldots, X_{n}, O_{1}, \ldots, O_{n}\right)
$$

$$
=P\left(X_{1}\right) \cdot P\left(O_{1} \mid X_{1}\right) \cdot \prod_{i=2}^{n} P\left(X_{i} \mid X_{i-1}\right) \cdot P\left(O_{i} \mid X_{i}\right)
$$

$$
P\left(X_{1}, \ldots, X_{n}, \mid o_{1}, \ldots, o_{n}\right)
$$

$$
\propto P\left(X_{1}\right) \cdot P\left(o_{1} \mid X_{1}\right) \cdot \prod_{i=2}^{n} P\left(X_{i} \mid X_{i-1}\right) \cdot P\left(o_{i} \mid X_{i}\right)
$$

Learning HMM from fully observable data

Have m data points

Each data point looks like:

- $X_{1}=b, X_{2}=r, X_{3}=a, X_{4}=c, X_{5}=e$
- $O_{1}=$ image of $b, O_{2}=$ image of $r, O_{3}=$ image of a, $O_{4}=$ image of $c, O_{5}=$ image of e

Learning HMM from fully observable data

Learn 3 distributions

$$
P\left(X_{1}=a\right)=\frac{\operatorname{Count}\left(X_{1}=a\right)}{m}
$$

$$
P\left(O_{i}=54 \mid X_{i}=a\right)=\frac{\text { Count(saw letter a and its observation was 54) }}{\text { Count(saw letter a) }}
$$

$$
P\left(X_{i}=b \mid X_{i-1}=a\right)=\frac{\text { Count(saw a letter b following an a) }}{\text { Count(saw an a followed by something) }}
$$

How many parameters do we have to learn?

Possible inference tasks in an HMM

Evaluation
Given HMM parameters and observation sequence $\left\{o_{i}\right\}_{i=1}^{5}$ find the probability of observation sequence

$$
P\left(o_{1}, \ldots, o_{5}\right)
$$

Can be computed using forward algorithm.

Possible inference tasks in an HMM

Decoding

Marginal probability of a hidden variable

$$
P\left(X_{i}=a \mid o_{1}, o_{2}, \ldots, o_{n}\right)
$$

Can be computed using forward-backward algorithm.

- linear in the length of the sequence, because HMM is a tree

Possible inference tasks in an HMM

Viterbi decoding

Most likely trajectory for hidden vars

$$
\max _{x_{1}, \ldots, x_{n}} P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid o_{1}, \ldots, o_{n}\right)
$$

- most likely word that generated images
- very similar to forward-backward algorithm

Not the same as decoding

Most likely state vs. Most likely trajectory

Most likely state at position i :

$$
\arg \max _{a} P\left(X_{i}=a \mid o_{1}, o_{2}, \ldots, o_{n}\right)
$$

Most likely assignment of state trajectory

$$
\max _{x_{1}, \ldots, x_{n}} P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid o_{1}, \ldots, o_{n}\right)
$$

Solution not the same!

$$
\begin{array}{ccc}
\mathrm{x} & \mathrm{y} & P(x, y) \\
\hline 0 & 0 & 0.35 \\
0 & 1 & 0.05 \\
1 & 0 & 0.3 \\
1 & 1 & 0.3
\end{array}
$$

Evaluation problem

Given parameters of the model, find the find probability of observed sequence.

$$
P\left(\left\{O_{i}\right\}_{i=1}^{n}\right)=\sum_{k} P\left(\left\{O_{i}\right\}_{i=1}^{n}, S_{n}=k\right)=\sum_{k} \alpha_{n}^{k}
$$

Compute α_{n}^{k} recursively. We use chain rule and Markov assumption:

$$
\begin{aligned}
\alpha_{n}^{k} & =P\left(\left\{O_{i}\right\}_{i=1}^{n}, S_{n}=k\right) \\
& =P\left(O_{n} \mid S_{n}=k\right) \cdot \sum_{l} \alpha_{n-1}^{\prime} P\left(S_{n}=k \mid S_{n-1}=l\right)
\end{aligned}
$$

Decoding most likely state

Given parameters of the model and the observed sequence find the probability that hidden state at time t was k.

$$
\begin{aligned}
P\left(S_{t}=k\left\{O_{i}\right\}_{i=1}^{n}\right) & =P\left(O_{1}, \ldots, O_{t}, S_{t}=k, O_{t+1}, \ldots, O_{n}\right) \\
& =\underbrace{P\left(O_{1}, \ldots, O_{t}, S_{t}=k\right)}_{\alpha_{t}^{k}} \cdot \underbrace{P\left(O_{t+1}, \ldots, O_{n} \mid S_{t}=k\right)}_{\beta_{t}^{k}}
\end{aligned}
$$

Again, we compute β_{t}^{k} recursively.

$$
\begin{aligned}
\beta_{t}^{k} & =P\left(O_{t+1}, \ldots, O_{n} \mid S_{t}=k\right) \\
& =\sum_{l} P\left(S_{t+1}=I \mid S_{t}=k\right) \cdot P\left(O_{t+1} \mid S_{t+1}=I\right) \beta_{t+1}^{\prime}
\end{aligned}
$$

Computational complexity

What is the running time for Forward, Backward, and Viterbi?
$O\left(K^{2} \cdot T\right)$, which is linear linear in T, instead of exponential in T.

We have not talked about Viterbi algorithm, but it is similar to forward-backward algorithm.

Learning parameters when hidden states are not observed

Baum-Welch Algorithm

- this is essentially an EM algorithm

Where does this arise?

Summary

Useful for modeling sequential data with few parameters using discrete hidden states that satisfy Markov assumption.

- Speech, OCR, finance

Representation

- initial prob, transition prob, emission prob
- Parameter sharing, only need to learn 3 distributions

Special case of BN

Summary

Algorithms for inference and learning in HMMs

- Computing marginal likelihood of the observed sequence: forward algorithm
- Predicting a single hidden state: forward-backward
- Predicting an entire sequence of hidden states: viterbi
- Learning HMM parameters:
- hidden states observed: simple counting
- otherwise Baum-Welch algorithm (an instance of an EM algorithm)

