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Handwritten character recognition




Structured prediction
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Sequential data

> time-series data (speach)
» characters in a sentence
» base pairs along a DNA strand
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Markov Model

Joint distribution of n arbitrary random variables

P(X1,Xo, ..., Xp) = P(X1) - P(X2 | X1) - ... P(Xn | Xn=1)

= P(Xy) - H P(X: | Xi_1)
i=2
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Example

Random walk model
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Understanding the HMM Semantics

P(O1 | X1 = x1) probability of an image given the letter is x;
P(X2 = x2 | X1 = x1) probability that letter xo will follow letter x;
Decision about X is influenced by all letters.



HMMs semantics: Details

Need just 3 distributions:

P(X1) starting state distribution

P(Xi | Xi—1) = P(X; | Xj—1) Vj, transition model
P(O; | Xi) = P(O; | Xj) Vj, observation model

Parameter sharing:

» more bias, need less data to train
» can deal with words of different length



HMMs semantics: Joint distribution

P(X1)
P(X; | X;—1)
P(O; | X3)

P(X1,...,Xn, 01,...,0n)

= P(X1)- P(O1 | X1) - [ P(Xi | Xi—1) - P(Oi | X))
i=2
P(Xl,...,Xn,‘ 01,...,On)

x P(X,) - P(o1 | X1) - [[ P(X: | Xiea) - Plor | X))



Learning HMM from fully observable data

Have m data points

Each data point looks like:

> X1:b,X2:r,X3:a,X4:c,X5:e
» O; = image of b, O, = image of r, O3 = image of a,
O = image of ¢, Os = image of e



Learning HMM from fully observable data

Learn 3 distributions

) — Count(X; = a)
B m

P(O; = 54| X; = a) = Count(saw letter a and its observation was 54)

Count(saw letter a)

PO = b | X1 =) = Count(saw a letter b following an a)
a e Count(saw an a followed by something)

How many parameters do we have to learn?



Possible inference tasks in an HMM

Evaluation

Given HMM parameters and observation sequence {0;}>_; find
the probability of observation sequence

P(o1,...,0s5)

Can be computed using forward algorithm.



Possible inference tasks in an HMM

Decoding

Marginal probability of a hidden variable
P(X, =a ‘ 01,02,...,0,,)

Can be computed using forward-backward algorithm.

> linear in the length of the sequence, because HMM is a tree



Possible inference tasks in an HMM

Viterbi decoding

Most likely trajectory for hidden vars

maxXx P(Xl :Xl,...,Xn:X,,|01,...

X1y+5Xn

» most likely word that generated images
> very similar to forward-backward algorithm

Not the same as decoding



Most likely state vs. Most likely trajectory

Most likely state at position i:

argmgxP(X,— =alo1,02,...,0p)

Most likely assignment of state trajectory

max P(X1=x1,...,Xp =X | 01,...,0p)

X1y-+9Xn

Solution not the samel

Xy P(xy)
0 0 035
0 1 005
1 0 03
11 03



Evaluation problem

Given parameters of the model, find the find probability of observed
sequence.

P{O}1) =Y PO}y, S =k) = ak
k k

k .
Compute o recursively.
We use chain rule and Markov assumption:

ay = P{O}1, S0 = k)
=P(On | Sn=k)"> ap 1P(Sn="k|Sp-1=1)
/



Decoding most likely state

Given parameters of the model and the observed sequence find the
probability that hidden state at time t was k.

ID(\Sj_-:k{o,‘}’r-,:]_):ID(O:[,...,Ot-,\St-:k7 Ot+1,...,on)
:P(Ol,...,ot,st:k)‘P(Ot+1,...,On|St:k)

af Bt

Again, we compute SX recursively.

BE = P(Ots1,...,0n| St = k)
= P(Set1=1]St = k) - P(Ors1 | Sts1 = 1)ty
I



Computational complexity

What is the running time for Forward, Backward, and Viterbi?

O(Kz- T), which is linear linear in T, instead of exponential in T.

We have not talked about Viterbi algorithm, but it is similar to
forward-backward algorithm.



Learning parameters when hidden states are not observed

Baum-Welch Algorithm

> this is essentially an EM algorithm

Where does this arise?



Summary

Useful for modeling sequential data with few parameters using
discrete hidden states that satisfy Markov assumption.

» Speech, OCR, finance
Representation

» initial prob, transition prob, emission prob
> Parameter sharing, only need to learn 3 distributions

Special case of BN



Summary

Algorithms for inference and learning in HMMs

» Computing marginal likelihood of the observed sequence:
forward algorithm
> Predicting a single hidden state: forward-backward
» Predicting an entire sequence of hidden states: viterbi
» Learning HMM parameters:
> hidden states observed: simple counting

» otherwise Baum-Welch algorithm (an instance of an EM
algorithm)



