Hidden Markov Models

Carlos Carvalho, Mladen Kolar and Robert McCulloch

12/03/2015

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Handwritten character recognition

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 のへで

Structured prediction

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

Sequential data

- time-series data (speach)
- characters in a sentence
- base pairs along a DNA strand

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Markov Model

Joint distribution of n arbitrary random variables

$$P(X_1, X_2, \dots, X_n) = P(X_1) \cdot P(X_2 \mid X_1) \cdot \dots \cdot P(X_n \mid X_{n-1})$$
$$= P(X_1) \cdot \prod_{i=2}^n P(X_i \mid X_{i-1})$$
$$\mathbf{x_1} \underbrace{\mathbf{x_2}}_{\mathbf{x_2}} \underbrace{\mathbf{x_3}}_{\mathbf{x_3}} \underbrace{\mathbf{x_4}}_{\mathbf{x_4}} \underbrace{\mathbf{x_{i-1}}}_{\mathbf{x_4}}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example

Random walk model

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Understanding the HMM Semantics

 $P(O_1 | X_1 = x_1)$ probability of an image given the letter is x_1 $P(X_2 = x_2 | X_1 = x_1)$ probability that letter x_2 will follow letter x_1 Decision about X_2 is influenced by all letters.

(日) (四) (日) (日) (日)

HMMs semantics: Details

Need just 3 distributions: $P(X_1)$ starting state distribution $P(X_i | X_{i-1}) = P(X_j | X_{j-1}) \quad \forall j$, transition model $P(O_i | X_i) = P(O_j | X_j) \quad \forall j$, observation model

Parameter sharing:

- more bias, need less data to train
- can deal with words of different length

(日) (日) (日) (日) (日) (日) (日) (日)

HMMs semantics: Joint distribution

$$P(X_1)$$

$$P(X_i \mid X_{i-1})$$

$$P(O_i \mid X_i)$$

$$P(X_1,...,X_n,O_1,...,O_n) = P(X_1) \cdot P(O_1 \mid X_1) \cdot \prod_{i=2}^n P(X_i \mid X_{i-1}) \cdot P(O_i \mid X_i)$$

$$egin{aligned} & P(X_1,\ldots,X_n,\mid o_1,\ldots,o_n) \ & \propto & P(X_1)\cdot P(o_1\mid X_1)\cdot\prod_{i=2}^n P(X_i\mid X_{i-1})\cdot P(o_i\mid X_i) \end{aligned}$$

Learning HMM from fully observable data

Have *m* data points

Each data point looks like:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Learning HMM from fully observable data

Learn 3 distributions

$$P(X_1 = a) = \frac{\operatorname{Count}(X_1 = a)}{m}$$

 $P(O_i = 54 \mid X_i = a) = \frac{\text{Count}(\text{saw letter a and its observation was 54})}{\text{Count}(\text{saw letter a})}$

$$P(X_i = b \mid X_{i-1} = a) = \frac{\text{Count}(\text{saw a letter b following an } a)}{\text{Count}(\text{saw an a followed by something})}$$

How many parameters do we have to learn?

Possible inference tasks in an HMM

Evaluation

Given HMM parameters and observation sequence $\{o_i\}_{i=1}^5$ find the probability of observation sequence

$$P(o_1,\ldots,o_5)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Can be computed using forward algorithm.

Possible inference tasks in an HMM

Decoding

Marginal probability of a hidden variable

$$P(X_i = a \mid o_1, o_2, \ldots, o_n)$$

Can be computed using forward-backward algorithm.

Inear in the length of the sequence, because HMM is a tree

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Possible inference tasks in an HMM

Viterbi decoding

Most likely trajectory for hidden vars

$$\max_{x_1,\ldots,x_n} P(X_1 = x_1,\ldots,X_n = x_n \mid o_1,\ldots,o_n)$$

- most likely word that generated images
- very similar to forward-backward algorithm

Not the same as decoding

Most likely state vs. Most likely trajectory

Most likely state at position *i*:

$$\arg\max_{a} P(X_i = a \mid o_1, o_2, \dots, o_n)$$

Most likely assignment of state trajectory

$$\max_{x_1,\ldots,x_n} P(X_1 = x_1,\ldots,X_n = x_n \mid o_1,\ldots,o_n)$$

Solution not the same!

$$\begin{array}{c|ccc} x & y & P(x,y) \\ \hline 0 & 0 & 0.35 \\ 0 & 1 & 0.05 \\ 1 & 0 & 0.3 \\ 1 & 1 & 0.3 \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Evaluation problem

Given parameters of the model, find the find probability of observed sequence.

$$P(\{O_i\}_{i=1}^n) = \sum_{k} P(\{O_i\}_{i=1}^n, S_n = k) = \sum_{k} \alpha_n^k$$

Compute α_n^k recursively. We use chain rule and Markov assumption:

$$\alpha_n^k = P(\{O_i\}_{i=1}^n, S_n = k)$$

= $P(O_n \mid S_n = k) \cdot \sum_{l} \alpha_{n-1}^{l} P(S_n = k \mid S_{n-1} = l)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Decoding most likely state

Given parameters of the model and the observed sequence find the probability that hidden state at time t was k.

$$P(S_{t} = k\{O_{i}\}_{i=1}^{n}) = P(O_{1}, \dots, O_{t}, S_{t} = k, O_{t+1}, \dots, O_{n})$$

= $\underbrace{P(O_{1}, \dots, O_{t}, S_{t} = k)}_{\alpha_{t}^{k}} \cdot \underbrace{P(O_{t+1}, \dots, O_{n} \mid S_{t} = k)}_{\beta_{t}^{k}}$

Again, we compute β_t^k recursively.

$$\beta_t^k = P(O_{t+1}, \dots, O_n \mid S_t = k)$$

= $\sum_l P(S_{t+1} = l \mid S_t = k) \cdot P(O_{t+1} \mid S_{t+1} = l)\beta_{t+1}^l$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What is the running time for Forward, Backward, and Viterbi?

 $O(K^2 \cdot T)$, which is linear linear in T, instead of exponential in T.

We have not talked about Viterbi algorithm, but it is similar to forward-backward algorithm.

Learning parameters when hidden states are not observed

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Baum-Welch Algorithm

this is essentially an EM algorithm

Where does this arise?

Summary

Useful for modeling sequential data with few parameters using discrete hidden states that satisfy Markov assumption.

Speech, OCR, finance

Representation

- initial prob, transition prob, emission prob
- Parameter sharing, only need to learn 3 distributions

- ロ ト - 4 回 ト - 4 □

Special case of BN

Summary

Algorithms for inference and learning in HMMs

- Computing marginal likelihood of the observed sequence: forward algorithm
- Predicting a single hidden state: forward-backward
- Predicting an entire sequence of hidden states: viterbi
- Learning HMM parameters:
 - hidden states observed: simple counting
 - otherwise Baum-Welch algorithm (an instance of an EM algorithm)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00