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Handwritten character recognition



Structured prediction



Sequential data

I time-series data (speach)
I characters in a sentence
I base pairs along a DNA strand



Markov Model

Joint distribution of n arbitrary random variables

P(X1,X2, . . . ,Xn) = P(X1) · P(X2 | X1) · . . . · P(Xn | Xn−1)

= P(X1) ·
n∏

i=2
P(Xi | Xi−1)
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Understanding the HMM Semantics

P(O1 | X1 = x1) probability of an image given the letter is x1
P(X2 = x2 | X1 = x1) probability that letter x2 will follow letter x1
Decision about X2 is influenced by all letters.



HMMs semantics: Details

Need just 3 distributions:
P(X1) starting state distribution
P(Xi | Xi−1) = P(Xj | Xj−1) ∀j , transition model
P(Oi | Xi) = P(Oj | Xj) ∀j , observation model

Parameter sharing:
I more bias, need less data to train
I can deal with words of different length



HMMs semantics: Joint distribution

P(X1, . . . ,Xn,O1, . . . ,On)

= P(X1) · P(O1 | X1) ·
n∏

i=2
P(Xi | Xi−1) · P(Oi | Xi)

P(X1, . . . ,Xn, | o1, . . . , on)

∝ P(X1) · P(o1 | X1) ·
n∏

i=2
P(Xi | Xi−1) · P(oi | Xi)



Learning HMM from fully observable data

Have m data points

Each data point looks like:
I X1 = b, X2 = r , X3 = a, X4 = c, X5 = e
I O1 = image of b, O2 = image of r , O3 = image of a,

O4 = image of c, O5 = image of e



Learning HMM from fully observable data

Learn 3 distributions

P(X1 = a) = Count(X1 = a)
m

P(Oi = 54 | Xi = a) = Count(saw letter a and its observation was 54)
Count(saw letter a)

P(Xi = b | Xi−1 = a) = Count(saw a letter b following an a)
Count(saw an a followed by something)

How many parameters do we have to learn?



Possible inference tasks in an HMM

Evaluation

Given HMM parameters and observation sequence {oi}5i=1 find
the probability of observation sequence

P(o1, . . . , o5)

Can be computed using forward algorithm.



Possible inference tasks in an HMM

Decoding

Marginal probability of a hidden variable

P(Xi = a | o1, o2, . . . , on)

Can be computed using forward-backward algorithm.
I linear in the length of the sequence, because HMM is a tree



Possible inference tasks in an HMM

Viterbi decoding

Most likely trajectory for hidden vars

max
x1,...,xn

P(X1 = x1, . . . ,Xn = xn | o1, . . . , on)

I most likely word that generated images
I very similar to forward-backward algorithm

Not the same as decoding



Most likely state vs. Most likely trajectory
Most likely state at position i :

argmax
a

P(Xi = a | o1, o2, . . . , on)

Most likely assignment of state trajectory

max
x1,...,xn

P(X1 = x1, . . . ,Xn = xn | o1, . . . , on)

Solution not the same!

x y P(x , y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3



Evaluation problem

Given parameters of the model, find the find probability of observed
sequence.

P({Oi}ni=1) =
∑

k
P({Oi}ni=1,Sn = k) =

∑
k
αk

n

Compute αk
n recursively.

We use chain rule and Markov assumption:

αk
n = P({Oi}ni=1, Sn = k)

= P(On | Sn = k) ·
∑

l
αl

n−1P(Sn = k | Sn−1 = l)



Decoding most likely state

Given parameters of the model and the observed sequence find the
probability that hidden state at time t was k.

P(St = k{Oi}ni=1) = P(O1, . . . ,Ot ,St = k,Ot+1, . . . ,On)
= P(O1, . . . ,Ot ,St = k)︸ ︷︷ ︸

αk
t

·P(Ot+1, . . . ,On | St = k)︸ ︷︷ ︸
βk

t

Again, we compute βk
t recursively.

βk
t = P(Ot+1, . . . ,On | St = k)

=
∑

l
P(St+1 = l | St = k) · P(Ot+1 | St+1 = l)βl

t+1



Computational complexity

What is the running time for Forward, Backward, and Viterbi?

O(K 2 · T ), which is linear linear in T , instead of exponential in T .

We have not talked about Viterbi algorithm, but it is similar to
forward-backward algorithm.



Learning parameters when hidden states are not observed

Baum-Welch Algorithm
I this is essentially an EM algorithm

Where does this arise?



Summary

Useful for modeling sequential data with few parameters using
discrete hidden states that satisfy Markov assumption.

I Speech, OCR, finance

Representation
I initial prob, transition prob, emission prob
I Parameter sharing, only need to learn 3 distributions

Special case of BN



Summary

Algorithms for inference and learning in HMMs
I Computing marginal likelihood of the observed sequence:

forward algorithm
I Predicting a single hidden state: forward-backward
I Predicting an entire sequence of hidden states: viterbi
I Learning HMM parameters:

I hidden states observed: simple counting
I otherwise Baum-Welch algorithm (an instance of an EM

algorithm)


