Lectures

  Week   Content Deliverables Due
1   Nearest Neighbors
  Bias-Variance Trade-Off
  Cross-Validation
 
2   Classification and regression trees      
3   Bagging and boosting       HW 1
4   Evaluating classifiers      
5   Support Vector Machines       HW 2
6   Intro to Neural networks      Individual HW  
7   Deep learning      Midterm
8   Recommender Systems     
9   Sequence Modelling   HW 3
10   In-class project presentation     
11   No class; Project write-up due      HW 4

Week 9

Sequence Modelling — First half of the lecture
Guest speaker: Vinh Luong — Second half of the lecture
Code: script

Optional reading:

  • Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville
    Book available at: http://www.deeplearningbook.org/
    Chapter 15

Week 8

  • recommender systems

Recommender Systems — Guest lecture: Rina Foygel Barber
Code: script

Optional reading:

Week 7

  • convolutional neural networks
  • auto-encoders

Slides
Code: scripts

Optional reading:

  • Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville
    Book available at: http://www.deeplearningbook.org/
    Chapter 9 and Chapter 14 provide enormous amount of detail.

Week 6

  • Introduction to neural networks

Neural networks
Code: scripts

Optional reading:

  • Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville
    Book available at: http://www.deeplearningbook.org/
    Read chapter 6. Skim through chapters 7 and 8.

  • h2o booklet on deep learning
  • h2o package

Week 5

  • perceptron, linear classifiers
  • support vector machines
  • gradient descent

SVM, Optimization
Code: scripts

Optional reading:

  • ISLR - Section 9

Individual homework: PDF

Week 4

  • evaluating classifiers; confusion matrix
  • expected value framework
  • profit and lift curves

Slides

Optional reading:

  • ISLR - Section 4

Week 3

  • ensemble methods
  • bagging; random forest
  • boosting

Slides

Code:

Optional reading:

  • ISLR - Section 8
  • Overview of Bagging PDF
  • Overview of Random Forests PDF

Assignment 2

Week 2

Slides
Code:

Optional reading:

  • ISLR - Section 4, Section 8
  • Overview of trees PDF

Week 1

  • Introduction to supervised learning; regression and classification
  • k nearest neighbors methods; similarity in machine learning
  • bias-variance trade-off; cross-validation

Course Overview, Slides

Code:

Optional textbook reading: An Introduction to Statistical Learning: Section 2, Section 5.1

  • PDF can be freely obtained here.

Instructions on how to convert the R Markdown document (Rmd file) into a PDF file.

Assignement 1 Due 11.59pm on Friday, January 19